- PII
- S0002331025040054-1
- DOI
- 10.31857/S0002331025040054
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 4
- Pages
- 62-89
- Abstract
- This study presents a comprehensive review of fission gas release (FGR) mechanisms in oxide and nitride nuclear fuels, along with modern approaches to their modeling. A schematic representation of the current understanding of FGR processes has been developed, encompassing intragranular diffusion, bubble coalescence, growth at grain boundaries, and the formation of interconnected gas tunnels. Special attention is given to atomistic methods (DFT, MD), which enable the assessment of how fuel type, stoichiometry, and lattice defects influence the migration mechanisms of fission gases. A comparative analysis of activation energy values obtained through DFT and MD simulations has been performed against experimental data, leading to the identification of discrepancies and their underlying causes. Preferred vacancy sites for fission gases in nitride and oxide fuels have been determined. The study also examines the diffusion and kinetic models implemented in fuel performance codes: their features and role in predicting FGR behavior. Key unresolved questions requiring further investigation are highlighted, including the primary nucleation sites of fission gas bubbles (intragranular vs. intergranular), the role of grain boundaries in tunnel formation, and the conditions under which burst release occurs at high burnups. The study emphasizes the necessity of an integrated approach combining experimental investigations and advancements in fuel performance modeling through atomistic and CFD methodologies to improve the predictive capabilities of fuel behavior under various reactor operating conditions.
- Keywords
- нитридное топливо оксидное топливо ксенон криптон газовые продукты деления ГПД топливные коды молекулярная динамика CFD
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Pizzocri D., Barani T., Luzzi L. SCIANTIX: A new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes // J. Nucl. Mater. 2020. V. 532. P. 152042.
- 2. Uffelen P. Van et al. Analysis of reactor fuel rod behavior // Handbook of Nuclear Engineering. Boston, MA: Springer US, 2010. P. 1519–1627.
- 3. Rest J. et al. Fission gas release from UO2 nuclear fuel: A review // J. Nucl. Mater. Elsevier B.V., 2019. V. 513. P. 310–345.
- 4. Lassmann K., Benk H. Numerical algorithms for intragranular fission gas release // J. Nucl. Mater. 2000. V. 280. № 2. P. 127–135.
- 5. Tonks M. et al. Unit mechanisms of fission gas release: Current understanding and future needs // J. Nucl. Mater. Elsevier B.V., 2018. V. 504. P. 300–317.
- 6. Шпильрайн Э.Э., Сковородько С.Н., Мозговой А.Г. Растворимость инертных газов в жидко-металлических теплоносителях // Теплофизика высоких температур. 2000. T. 38. № 3. C. 407–411.
- 7. Van Uffelen P. et al. A review of fuel performance modelling // Journal of Nuclear Materials. Elsevier B.V., 2019. V. 516. P. 373–412.
- 8. Aybar H.S., Ortego P. A review of nuclear fuel performance codes // Prog. Nucl. Energy. 2005. V. 46. № 2. P. 127–141.
- 9. Ding M. et al. A review of the development of nuclear fuel performance analysis and codes for PWRs // Annals of Nuclear Energy. 2021. V. 163. P. 108542.
- 10. Dong B. et al. Review on models to evaluate coolant activity under fuel defect condition in PWR // Annals of Nuclear Energy. 2019. V. 124. P. 223–233.
- 11. Pastore G. et al. Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis // Nucl. Eng. Des. 2013. V. 256. P. 75–86.
- 12. Tanaka K. et al. Fission gas release and swelling in uranium–plutonium mixed nitride fuels // J. Nucl. Mater. 2004. V. 327, № 2–3. P. 77–87.
- 13. Grachev A.F. et al. Fission gas release from irradiated uranium-plutonium nitride fuel // At. Energy. 2020. V. 129, № 2. P. 103–107.
- 14. Porollo S.I., Mossev L.I., Konobeev Y.V. Investigation of fission product release from irradiated oxide and nitride nuclear fuel on high-temperature heating in helium flow // At. Energy. 2021. V. 130. № 2. P. 76–81.
- 15. Wang M. et al. Review of fission gas release in liquid metal reactor fuel cladding failure accident // Nucl. Eng. Des. 2024. V. 419. P. 112981.
- 16. Cong T. et al. Development and evaluation of fuel performance analysis code FuSPAC // Int. J. Adv. Nucl. React. Des. Technol. 2022. V. 4, № 3. P. 129–138.
- 17. Cong T., Chen H., Gu H. Upgradation of fission gas release model in the nuclear fuel analysis code FuSPAC // Prog. Nucl. Energy. 2023. V. 162. P. 104775.
- 18. Williamson R.L. et al. BISON: A flexible code for advanced simulation of the performance of multiple nuclear fuel forms // Nucl. Technol. 2021. V. 207. № 7. P. 954–980.
- 19. Gamble K.A. BISON: A flexible code for advanced simulation of the performance of multiple nuclear fuel forms. 2024. P. 39.
- 20. Geelhood K.J. et al. FAST-1.2: A computer code for thermal-mechanical nuclear fuel analysis under steady-state and transients. 2023.
- 21. Sartori E., Killeen J., Turnbull J.A. International fuel performance experiments (IFPE) database [Electronic resource] // NEA. 2010. URL: https://www.oecd-nea.org/jcms/pl_36358/international-fuel-performance-experiments-ifpe-database
- 22. IAEA. Improvement of computer codes used for fuel behaviour simulation (FUMEX-II). 2007. 133 p.
- 23. IAEA. Improvement of computer codes used for fuel behaviour simulation (FUMEX-III). 2013. 125 p.
- 24. Zullo G., Pizzocri D., Luzzi L. The SCIANTIX code for fission gas behaviour: Status, upgrades, separate-effect validation, and future developments // J. Nucl. Mater. 2023. V. 587. P. 154744.
- 25. Boldyrev A.V. et al. Fuel performance code BERKUT-U to simulate the in-pile behavior of a single oxide or nitride fuel rod for fast reactors // J. Nucl. Mater. 2025. V. 603. P. 155417.
- 26. Rossiter G., Peakman A. Development and validation of loss of coolant accident (LOCA) simulation capability in the ENIGMA fuel performance code for zirconium-based cladding materials // Nucl. Eng. Des. 2024. V. 416. P. 112767.
- 27. Peakman A., Rossiter G. Incorporation of uranium nitride fuel capability into the ENIGMA fuel performance code: Model development and validation // Nucl. Eng. Des. 2024. V. 429. P. 113604.
- 28. Luzzi L. et al. Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment // Nucl. Eng. Technol. 2021. V. 53. № 10. P. 3367–3378.
- 29. Barani T. et al. Assessing the PLEIADES/GERMINAL V3 fuel performance code against transmutation experiments in sodium fast reactors // Ann. Nucl. Energy. 2024. V. 203. P. 110526.
- 30. Williamson R.L. et al. Validating the BISON fuel performance code to integral LWR experiments // Nucl. Eng. Des. 2016. V. 301. P. 232–244.
- 31. Veprev D.P., Boldyrev A.V., Chernov S.Y. Validation of the BERKUT fuel rod module against mixed nitride fuel experimental data // Ann. Nucl. Energy. 2020. V. 135. P. 106963.
- 32. Rizk J.T. et al. Development of mechanistic fission gas release and swelling models for UN fuels in BISON. 2024. 62 p.
- 33. Geelhood K.J. et al. Frapcon-4.0: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup. 2015. 158 p.
- 34. Liao H. et al. Modification and update of FROBA-ROD code and its applications in fuel rod behavior analysis for PWRs // Ann. Nucl. Energy. 2019. V. 133. P. 900–915.
- 35. Geelhood K.J. et al. FRAPTRAN-2.0: A computer code for the transient analysis of oxide fuel rods. 2016. 226 p.
- 36. Giaccardi L. et al. Towards modelling defective fuel rods in TRANSURANUS: Benchmark and assessment of gaseous and volatile radioactive fission product release // Ann. Nucl. Energy. 2024. V. 197. P. 110249.
- 37. Williamson R.L. et al. BISON: A flexible code for advanced simulation of the performance of multiple nuclear fuel forms // Nucl. Technol. 2021. V. 207. № 7. P. 954–980.
- 38. Lyon W. et al. Fuel performance analysis capability in FALCON. 2002. 90 p.
- 39. Probert A., Watson J., Aitkaliyeva A. An assessment of UO2 and ATF concept fuel performance modeling demands against current experimental capabilities under LOCA conditions // Ann. Nucl. Energy. 2024. V. 205. P. 110581.
- 40. Zullo G. et al. Integral-scale validation of the SCIANTIX code for light water reactor fuel rods // J. Nucl. Mater. 2024. V. 601. P. 155305.
- 41. Scolaro A. et al. The OFFBEAT multi-dimensional fuel behavior solver // Nucl. Eng. Des. 2020. Vol. 358, № June 2019. P. 110416.
- 42. Verma L. et al. Extending the validation database of OFFBEAT fuel performance code for LOCA scenarios // TopFuel 2024. 2024. P. 11.
- 43. Zabudko L.M. et al. Status on performance study of mixed nitride fuel pins of BREST reactor type // Nucl. Eng. Des. 2021. V. 384. P. 111430.
- 44. Tarasov V.I., Ozyin V.D., Veshchunov M.S. Simulation of radioactive fission gas release from defective PWR fuel rod using the MFPR/R mechanistic code // J. Nucl. Mater. 2023. V. 583. P. 154536.
- 45. Lainet M. et al. GERMINAL, a fuel performance code of the PLEIADES platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors // J. Nucl. Mater. 2019. V. 516. P. 30–53.
- 46. Germain A. et al. Modeling of fission product release during severe accidents with the fuel performance code ALCYONE // Nucl. Eng. Des. 2022. V. 393. P. 111778.
- 47. Introini C. et al. ALCYONE: the fuel performance code of the PLEIADES platform dedicated to PWR fuel rods behavior // Ann. Nucl. Energy. V. 207. P. 110711.
- 48. Lemehov S.E. et al. MACROS benchmark calculations and analysis of fission gas release in MOX with high content of plutonium // Prog. Nucl. Energy. 2012. V. 57. P. 117–124.
- 49. Luzzi L. et al. Assessment of INSPYRE-extended fuel performance codes against the SUPERRACT-1 fast reactor irradiation experiment // Nucl. Eng. Technol. V. 55. № 3. P. 884–894.
- 50. Moal A., Georgenthum V., Marchand O. SCANAIR: A transient fuel performance code // Nucl. Eng. Des. 2014. V. 280. P. 150–171.
- 51. Matzke H., Spino J. Formation of the rim structure in high burnup fuel // J. Nucl. Mater. 1997. V. 248. P. 170–179.
- 52. Williamson R.L. et al. Multi-dimensional simulation of LWR fuel behavior in the BISON fuel performance code. 2016. V. 68, № 11.
- 53. Grachev A.F. et al. Results of studies of BN-600 fuel rods with mixed uranium-plutonium nitride fuel and CHS68-id c.d. steel cladding // At. Energy. 2019. V. 126. № 3. P. 160–166.
- 54. Vathonne E. et al. Determination of krypton diffusion coefficients in uranium dioxide using atomic scale calculations // Inorg. Chem. 2017. V. 56. № 1. P. 125–137.
- 55. Crocombette J.P. Ab initio energetics of some fission products (Kr, I, Cs, Sr and He) in uranium dioxide // J. Nucl. Mater. 2002. V. 305. № 1. P. 29–36.
- 56. Muntaha M.A. et al. Impact of grain boundary and surface diffusion on predicted fission gas bubble behavior and release in UO2 fuel // J. Nucl. Mater. 2024. V. 594. P. 155032.
- 57. Petit T. et al. Location of krypton atoms in uranium dioxide // J. Nucl. Mater. 1999. V. 275. № 1. P. 119–123.
- 58. Andersson D.A. et al. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO(2-x)- Implications for nuclear fuel performance modeling // J. Nucl. Mater. 2014. V. 451. № 1–3. P. 225–242.
- 59. Murphy S.T. et al. Free energy of Xe incorporation at point defects and in nanovoids and bubbles in UO2 // Phys. Rev. B. 2012. V. 85. № 14. P. 144102.
- 60. Thompson A.E., Wolverton C. Pathway and energetics of xenon migration in uranium dioxide // Phys. Rev. B. 2013. V. 87. № 10. P. 104105.
- 61. Andersson D.A. et al. U and Xe transport in UO2±x: Density functional theory calculations // Phys. Rev. B. 2011. V. 84. № 5. P. 054105.
- 62. Grimes R.W., Catlow C.R.A. The stability of fission products in uranium dioxide // Philos. Trans. R. Soc. London. Ser. A Phys. Eng. Sci. 1991. V. 335. № 1639. P. 609–634.
- 63. Merikar P.V. et al. Thermodynamics of fission products in UO2±x // J. Phys. Condens. Matter. 2009. V. 21. № 43. P. 435602
- 64. Miekely W., Felix F. Effect of stoichiometry on diffusion of xenon in UO2 // J. Nucl. Mater. 1972. V. 42. № 3. P. 297–306.
- 65. Yang L., Wirth B.D. Evolution of pressurized xenon bubble and response of uranium dioxide matrix: A molecular dynamics study // J. Nucl. Mater. 2021. V. 544. P. 152730.
- 66. Jelea A., Pelleng R.J.-M., Ribeiro F. An atomistic modeling of the xenon bubble behavior in the UO2 matrix // J. Nucl. Mater. 2014. V. 444. № 1–3. P. 153–160.
- 67. Thompson A.E., Meredig B., Wolverton C. Corrigendum: An improved interatomic potential for xenon in UO2: a combined density functional theory/generic algorithm approach (2014 J. Phys.: Condens. Matter 26105501) // J. Phys. Condens. Matter. 2014. V. 26. № 22. P. 229501.
- 68. Xia Y. et al. Molecular dynamics simulations of Xe behaviors at the grain boundary in UO2 // Metals. 2022. V. 12. № 5. P. 763.
- 69. Yang L., Kaltsoyannis N. Incorporation of Kr and Xe in uranium mononitride: A density functional theory study // J. Phys. Chem. C. 2021. V. 125. № 48. P. 26999–27008.
- 70. Claisse A. et al. Transport properties in dilute UN(X) solid solutions (X = Xe, Kr) // Phys. Rev. B. 2016. V. 94. № 17. P. 174302.
- 71. Li J.J. et al. The incorporation of xenon at point defects and bubbles in uranium mononitride // J. Nucl. Mater. 2023. V. 586. P. 154656.
- 72. Kligfel M. et al. Towards a multiscale approach for assessing fission product behaviour in UN // J. Nucl. Mater. 2013. V. 442. № 1–3. P. 253–261.
- 73. Cooper M.W.D. et al. Simulation of radiation driven fission gas diffusion in UO2, ThO2 and PuO2 // J. Nucl. Mater. 2016. V. 481. P. 125–133.
- 74. Matzke H.J. Gas release mechanisms in UO2-a critical review // Radiat. Eff. 1980. V. 53. № 3–4. P. 219–242.
- 75. Garcia P. et al. A study of xenon aggregates in uranium dioxide using X-ray absorption spectroscopy // J. Nucl. Mater. 2006. V. 352. № 1–3. P. 136–143.
- 76. Nogita K., Une K. High resolution TEM observation and density estimation of Xe bubbles in high burnup UO2 fuels // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 1998. V. 141. № 1–4. P. 481–486.
- 77. Cornell R.M. The growth of fission gas bubbles in irradiated uranium dioxide // Philos. Mag. 1969. V. 19. № 159. P. 539–554.
- 78. Miekely W., Felix F. Effect of stoichiometry on diffusion of xenon in UO2 // J. Nucl. Mater. 1972. V. 42. № 3. P. 297–306.
- 79. Kocevski V. et al. Development and application of a uranium mononitride (UN) potential: Thermomechanical properties and Xe diffusion // J. Nucl. Mater. 2022. V. 562. P. 153553.
- 80. Kocevski V., Cooper M.W.D., Andersson D.A. Modeling of fission gas diffusion and release for doped // J. Nucl. Mater. 2023. V. 584. P. 154575.
- 81. Yang L., Kaltsoyannis N. Incorporation and migration of xenon in uranium-plutonium mixed nitride. A density functional theory study // J. Nucl. Mater. 2023. V. 577. P. 154330.
- 82. Cooper M.W.D. et al. Simulations of self- and Xe diffusivity in uranium mononitride including chemistry and irradiation effects // J. Nucl. Mater. 2023. V. 587. P. 154685.
- 83. Ma H. et al. Interaction between Xe bubbles and grain boundaries as well as the influences on structural evolution in UO2: A molecular dynamics simulation // J. Nucl. Mater. 2024. V. 594. P. 155039.
- 84. Guo Z. et al. Temperature effects on Xe bubble structure and grain boundary migration in UO2: A molecular dynamics simulation // J. Mater. Res. Technol. 2025. V. 35. P. 743–753.
- 85. Zacharie I. et al. Thermal treatment of uranium oxide irradiated in pressurized water reactor: Swelling and release of fission gases // J. Nucl. Mater. 1998. V. 255. № 2–3. P. 85–91.
- 86. Guo J. et al. Investigation of the fission gas release and grain boundary percolation in oxide fuels: A COMSOL multiphysics-based study // Nucl. Eng. Des. 2024. Vol. 427. P. 113400.
- 87. Yun Y. et al. Atomic diffusion mechanism of Xe in UO2 // J. Nucl. Mater. 2008. V. 378. № 1. P. 40–44.
- 88. Kleykamp H. The chemical state of the fission products in oxide fuels // J. Nucl. Mater. 1985. V. 131. № 2–3. P. 221–246.
- 89. Speight M.V., Turnbull J.A. Enhanced fission-product release by grain-boundary diffusion // J. Nucl. Mater. 1977. V. 68. № 2. P. 244–249.
- 90. Turnbull J.A. et al. The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide // J. Nucl. Mater. 1982. V. 107. № 2–3. P. 168–184.
- 91. Lewis B.J. Fission product release from nuclear fuel by recoil and knockout // J. Nucl. Mater. 1987. V. 148. № 1. P. 28–42.
- 92. Katsumi U., Shinji K. Fission gas release during post irradiation annealing of BWR fuels // J. Nucl. Sci. Technol. 1990. V. 27. № 11. P. 1002–1016.
- 93. Rothwell E. The release of kr85 from irradiated uranium dioxide on post-irradiation annealing // J. Nucl. Mater. 1962. V. 5. № 2. P. 241–249.
- 94. Pastore G. et al. Modeling of transient fission gas behavior in oxide fuel and application to the BISON code // Proc. Enlarg. Halden Program. Gr. Meet. Roros, Norway-2014. P. 12–16.
- 95. Booth A.H. A method of calculating fission gas diffusion from UO2 // Atomic Energy of Canada Limited, AECL (Report). 1976. P. 22.
- 96. Iqbal M.J., Mirza N.M., Mirza S.M. Kinetic simulation of fission product activity in primary coolant of typical PWRS under power perturbations // Nucl. Eng. Des. 2007. V. 237. № 2. P. 199–205.
- 97. Chun M.H., Tak N.I., Lee S.K. Development of a computer code to estimate the fuel rod failure using primary coolant activities of operating PWRS // Ann. Nucl. Energy. 1998. V. 25. № 10. P. 753–763.
- 98. Beck S.D. The diffusion of radioactive fission products from porous fuel elements // Jurnal Sains dan Seni ITS. 1960. V. 6. № 1. 51–66 p.
- 99. Kidson G.V. A generalized analysis of the cumulative diffusional release of fission product gases from an “Equivalent Sphere” of UO2 // J. Nucl. Mater. 1980. V. 88. № 2–3. P. 299–308.
- 100. Forsberg K., Massih A.R. Diffusion theory of fission gas migration in irradiated nuclear fuel UO2 // J. Nucl. Mater. 1985. V. 135. № 2–3. P. 140–148.
- 101. Dong B. et al. CFD study on mechanisms of fission gas burst release from defective fuel rods of a typical PWR // Ann. Nucl. Energy. 2020. V. 140. P. 107089.