RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Энергетика Bulletin of the Russian Academy of Sciences. Energetics

  • ISSN (Print) 0002-3310
  • ISSN (Online) 3034-6495

Mathematical Modeling of Hydrodynamic Instability of the Flows in Combustion Chambers Liquid Propellant Rocket Engines

PII
S0002331025020042-1
DOI
10.31857/S0002331025020042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
53-64
Abstract
The phenomenon of hydrodynamic instability of flows in combustion chambers of liquid-propellant rocket engines and its influence on occurrence and development of high-frequency oscillations of working process parameters are considered. Based on the numerical solution of two model problems, it is shown that hydrodynamic instability of the flow can directly cause high-frequency oscillations in the engine chamber. The first of the above tasks corresponds to uniform blowing of combustion products into the chamber through the section. In this formulation, the expected pulsations are not observed, and the flow parameters at the steady-state mode correspond to the conditions of thermodynamic equilibrium, which can be taken as verification of the proposed mathematical model. Second task corresponds to slotted injection of combustion products into chamber simulating operation of injector head with concentric rows of mixing elements arranged on it. The presence of slotted injection leads to the emergence of hydrodynamic instability of the flow with the formation of intense vortex zones in the working volume of the combustion chamber and the subsonic part of the nozzle. This process is accompanied by the appearance of high-frequency oscillations in the values of the flow parameters. Calculation results are given and the obtained numerical solution is tested.
Keywords
гидродинамическая неустойчивость течения высокочастотные колебания камера сгорания и сопло ракетного двигателя щелевой вдув форсуночная головка смесительные элементы численное решение
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Неустойчивость горения в ЖРД / под ред. Д. Харрье и Ф.Г. Рирдона. М., 1975.
  2. 2. Лебединский Е.В., Калмыков Г.П., Мосолов С.В. и др., под ред. академика РАН Коротеева А.С. Рабочие процессы в жидкостном ракетном двигателе и их моделирование. М.: Машиностроение, 2008.
  3. 3. Jianxiu Qin and Huiqiang Zhang. Numerical analysis of self-excited combustion instabilities in a small MMH/NTO liquid rocket engine. Hindawi, International Journal of Aerospace Engineering, Vol. 2020, Article ID 3493214, 17 pages, https://doi.org/10.1155/2020/3493214
  4. 4. Urbano A., Selle L., Staffelbach G., Cuenot B., Schmitt T., Ducruix S., Candel S. Exploration of combustion instability triggering using Large Eddy Simulation of a multiple injector Liquid Rocket Engine. Combustion and Flame, Elsevier, 2016, 169, pp. 129–140. 10.1016/j.combustflame.2016.03.020. hal-01320509
  5. 5. Борисов Д.М., Шураев Ю.А., Миронов В.В. Метод расчета сжимаемых вязких течений в каналах энергодвигательных установок со сложной геометрией проточного тракта // Изв. РАН. Энергетика, 2015. № 5. С. 152–158.
  6. 6. Трусов Б.Г. Моделирование химических и фазовых равновесий при высоких температурах (Астра-4/рс). М.: Изд. МВТУ им. Э. Баумана, 1991.
  7. 7. Борисов Д.М., Миронов В.В., Шураев Ю.А. Термохимическое моделирование неизоэнтропических процессов в камерах сгорания и соплах ракетных двигателей. // Изв. РАН. Энергетика, 2020. № 1. С. 21–39.
  8. 8. Ковеня В.М., Яненко Н.Н. Метод расщепления в задачах газовой динамики. Издательство “Наука”. Сибирское отделение. Новосибирск, 1981 год.
  9. 9. Марчук Г.И. Методы расщепления. Москва. “Наука”. Главная редакция физико-математической литературы, 1988 год.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library