RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Энергетика Bulletin of the Russian Academy of Sciences. Energetics

  • ISSN (Print) 0002-3310
  • ISSN (Online) 3034-6495

Melting conditions for porous heat-generating device with active cooling: approximate analytical solution

PII
10.31857/S0002331024060049-1
DOI
10.31857/S0002331024060049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
62-70
Abstract
In thermal engineering applications (for example, when studying the operating conditions of thermal storage and electrochemical devices), problems often arise related to the phase transition front propagation in thermally stressed elements. This paper considers the solution of a simplified problem of heating element flow cooling. To this end, analytical estimates were obtained for the critical values of heat release intensity corresponding to the onset of melting and complete melting of the porous sample. The results are compared with numerical calculations.
Keywords
фазовые переходы пористая среда активное охлаждение
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Sarbu I., Sebachievici C. A Comprehensive Review of Thermal Energy Storage // Sustainability. 2018. V. 10. P. 191. DOI: 10.3390/su10010191
  2. 2. Mallick S., Gayen D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – A critical review // Journal of Energy Storage. 2023. V. 62. P. 106894. DOI: 10.1016/j.est.2023.106894
  3. 3. Panchenko S.V., Bobkov V.I., Fedulov A.S., Chernovalova M.V. Mathematical modelling of thermal and physical-chemical processes during sintering // Non-ferrous Metals. 2018. No. 2. P. 50. DOI: 10.17580/nfm.2018.02.09
  4. 4. Thevenin P.O., Ersson A.G., Kusar H.M.J., Menon P.G., Jaras S.G. Deactivation of high temperature combustion catalysts // Applied Catalysis A: General. 2001. V. 212. P. 189. DOI: 10.1016/S0926-860X(00)00846-2
  5. 5. Puszynski J., Jayaraman V.K., Hlavacek V. A Stefan problem for exothermic non-catalytic reactions // International Journal of Heat and Mass Transfer. 1985. V. 28. No. 6. P. 1237. DOI: 10.1016/0017-9310(85)90133-4
  6. 6. Tripathi P., Rao L. Single particle and packed bed combustion characteristics of high ash and high plastic content refuse derived fuel // Fuel. 2022. V. 308. P. 121983. DOI: 10.1016/j.fuel.2021.121983
  7. 7. Sajjadi M., Azaiez J. Heat and mass transfer in melting porous media: Stable miscible displacements // International Journal of Heat and Mass Transfer. 2015. V. 88. P. 926. DOI: 10.1016/j.ijheatmasstransfer.2015.05.017
  8. 8. Вулис Л.А. Тепловой режим горения. М.-Л.: Государственное энергетическое издательство, 1954. 288 с.
  9. 9. Lutsenko N.A. Numerical modeling of unsteady gas flow through porous heat-evolutional objects with partial closure of the object’s outlet // International Journal of Heat and Mass Transfer. 2014. V. 72. P. 602. DOI: 10.1016/j.ijheatmasstransfer.2014.01.046
  10. 10. Саженков С.А. Исследование задачи Дарси-Стефана о фазовых переходах в насыщенном пористом грунте // ПМТФ. 2008. Т. 49. № 4. С. 81.
  11. 11. Barbu V., Ciotir I., Danaila I. Existence and Uniqueness of Solution to the Two-Phase Stefan Problem with Convection // Applied Mathematics & Optimization. 2021. V. 84. P. 123. DOI: 10.1007/s00245-021-09764-w
  12. 12. Crepeau J.C., Siahpush A., Spotten B. On the Stefan problem with volumetric energy generation // Heat and Mass Transfer. 2009. V. 46. P. 119. DOI: 10.1007/s00231-009-0550-5
  13. 13. Alsulami R.A., Zope T.M., Premnath K., Aljaghtham M. Convectively cooled solidification in phase change materials in different configurations subject to internal heat generation: Quasi-steady analysis // Applied Thermal Engineering. 2023. V. 221. P. 119849. DOI: 10.1016/j.applthermaleng.2022.119849
  14. 14. Донской И.Г. Влияние лучистых теплопотерь на условия плавления материала с внутренним тепловыделением // Изв. ВУЗов. Проблемы энергетики. 2024. Т. 26. № 3. С. 173. DOI: 10.30724/1998-9903-2024-26-3-173-183
  15. 15. Donskoy I. The critical conditions of filtration flow blocking in a porous channel with phase transitions // Journal of Heat and Mass Transfer Research. 2024. DOI: 10.22075/JHMTR.2024.34469.1570 (in press)
  16. 16. Gunn D.J. Diffusion and chemical reaction in catalysis and absorption // Chemical Engineering Science. 1967. V. 22. No. 11. P. 1439. DOI: 10.1016/0009-2509(67)80071-X
  17. 17. Донской И.Г. Задача Стефана в тепловыделяющем цилиндрическом образце с граничными условиями третьего рода: расчет времени расплавления // iPolytech Journal. 2024. Т. 28. № 2. С. 290. DOI: 10.21285/1814-3520-2024-2-290-302
  18. 18. Быков В.И., Цыбенова С.Б. Динамика фазовых переходов первого рода // ДАН. 2009. Т. 429. № 3. С. 347.
  19. 19. Lutsenko N.A. Numerical model of two-dimensional heterogeneous combustion in porous media under natural convection or forced filtration // Combustion Theory and Modelling. 2018. V. 22. No. 2. P. 359. DOI: 10.1080/13647830.2017.1406617
  20. 20. Crepeau J., Siahpush A.S. Solid–liquid phase change driven by internal heat generation // Comptes Rendus Mecanique. 2012. V. 340. P. 471. DOI: 10.1016/j.crme.2012.03.004
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library