RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Энергетика Bulletin of the Russian Academy of Sciences. Energetics

  • ISSN (Print) 0002-3310
  • ISSN (Online) 3034-6495

Effects of Nozzle Configuration on Efficiency of Direct-Contact Gas-Vapor Mixture Generators

PII
10.31857/S0002331024010047-1
DOI
10.31857/S0002331024010047
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
30-41
Abstract
Numerical simulation of water spray evaporation in hot flue gas flow provided a dataset that was used to find correlation between evaporation efficiency and nozzle design parameters: mean droplet diameter, spray cone angle and hollowness. Fitted with linear model simulation data were extrapolated outside their original ranges to find the maximum, and corresponding efficiency vector. This vector was interpreted as a preferred direction of nozzle design optimization: provide wide hollow cones. Moreover, it was shown that positive correlation between evaporation efficiency and spray cone outer angle becomes stronger as its hollowness increases. However, it was pointed out that evaporation efficiency of narrow hollow sprays can be less than of full cone sprays in certain conditions. It was also found that droplet size when below 1 mm is almost irrelevant to spray evaporation efficiency.
Keywords
численное моделирование водяной распыл дымовые газы испарение
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Rostami V., Shao Y., Boyd A. J. (2012). Carbonation Curing versus Steam Curing for Precast Concrete Production. Journal of Materials in Civil Engineering, 24(9), 1221–1229. doi:10.1061/(asce)mt.1943-5533.0000462
  2. 2. He Z., Wang S., Mahoutian M., Shao Y. (2020). Flue gas carbonation of cement-based building products. Journal of CO2 Utilization, 37, 309–319. doi:10.1016/j.jcou.2020.01.001
  3. 3. Gay P., Piccarolo P., Ricauda Aimonino D., Tortia C. (2010). A high efficiency steam soil disinfestation system, part I: Physical background and steam supply optimisation. Biosystems Engineering, 107(2), 74–85. doi:10.1016/j.biosystemseng.2010.07.003
  4. 4. Miller T. C., Samtani J. B., Fennimore S. A. (2014). Mixing steam with soil increases heating rate compared to steam applied to still soil. Crop Protection, 64, 47–50. doi:10.1016/j.cropro.2014.06.002
  5. 5. Gundermann M., Raab F., Raab D., Botsch T. W. (2021). Investigation of the heat transfer coefficient during the condensation of small quantities of water vapour from a mixture with a high proportion of non-condensable gas in a horizontal smooth tube. International Journal of Heat and Mass Transfer, 170, 121016. doi:10.1016/j.ijheatmasstransfer.2021.121016
  6. 6. Dickinson D. R., Marshall W. R. (1968). The rates of evaporation of sprays. AIChE Journal, 14(4), 541–552. doi:10.1002/aic.690140404
  7. 7. Som S. K., Dash S. K. (1993). Thermodynamics of spray evaporation. Journal of Physics D: Applied Physics, 26(4), 574–584. doi:10.1088/0022-3727/26/4/009
  8. 8. Fisenko S. P., Brin A. A., Petruchik A. I. 2004. Evaporative cooling of water in a mechanical draft cooling tower. International Journal of Heat and Mass Transfer 47, 165–177.
  9. 9. Belarbi R., Ghiaus C., Allard F. (2006). Modeling of water spray evaporation: Application to passive cooling of buildings. Solar Energy, 80(12), 1540–1552. doi:10.1016/j.solener.2006.01.004
  10. 10. Rivas A., Villermaux E. (2016). Dense spray evaporation as a mixing process. Physical review fluids 1, 014201. doi:10.1103/PhysRevFluids.1.014201
  11. 11. Chang T. B., Yu L. Y. (2015). Optimal nozzle spray cone angle for triangular-pitch shell-and-tube interior spray evaporator. International Journal of Heat and Mass Transfer, 85, 463–472. doi:10.1016/j.ijheatmasstransfer.2015.01.123
  12. 12. Fathinia F., Al-Abdeli Y.M., Khiadani M. (2019). Evaporation rates and temperature distributions in fine droplet flash evaporation sprays. International Journal of Thermal Sciences, 145, 106037. doi:10.1016/j.ijthermalsci.2019.106037
  13. 13. Fathinia F., Khiadani M., Al-Abdeli Y.M. (2019). Experimental and mathematical investigations of spray angle and droplet sizes of a flash evaporation desalination system. Powder Technology. doi:10.1016/j.powtec.2019.07.081
  14. 14. Lacour S. O.L., Flick D., Trinquet F., Leducq D., Vende P. E. (2020). Water evaporation flux and cooling efficiency of spraying on cross-flow exchangers. Applied Thermal Engineering, 115652. doi:10.1016/j.applthermaleng.2020.115652
  15. 15. Okada S., Ohsaki S., Nakamura H., Watano S. (2020). Estimation of evaporation rate of water droplet group in spray drying process. Chemical Engineering Science, 115938. doi:10.1016/j.ces.2020.115938
  16. 16. Tissot J. (2011). Amélioration des performances énergétiques et environnementales des systèmes frigorifiques au moyen de la brumisation des condenseurs à air (Doctoral dissertation, Université Henri Poincaré-Nancy 1).
  17. 17. Raoult F., Lacour S., Carissimo B., Trinquet F., Delahaye A., Fournaison L. (2018). CFD water spray model development and physical parameter study on the evaporative cooling. Applied Thermal Engineering. doi:10.1016/j.applthermaleng.2018.12.063
  18. 18. Safiullah, Keiya N., Youichi O. (2021). Evaporation and mixture formation characteristics of diesel spray under various nozzle hole size and injection pressure condition employing similar injection rate profile. International Communications in Heat and Mass Transfer, 123, 105184. doi:10.1016/j.icheatmasstransfer.2021.105184
  19. 19. Sureshkumar R., Kale S. R., Dhar P. L. (2008). Heat and mass transfer processes between a water spray and ambient air – I. Experimental data. Applied Thermal Engineering, 28(5–6), 349–360. doi:10.1016/j.applthermaleng.2007.09.010
  20. 20. Sureshkumar R., Kale S. R., Dhar P. L. (2008). Heat and mass transfer processes between a water spray and ambient air – II. Simulations. Applied Thermal Engineering, 28(5–6), 361–371. doi:10.1016/j.applthermaleng.2007.09.015
  21. 21. Nikitin M. N. (2022). Simulation data on nozzle configuration of direct-contact gas-vapor mixture generators. Mendeley Data. V1. doi: 10.17632/5xdf5y9z24.1
  22. 22. Richardson L. F. The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam // Transactions of the Royal Society A. 1911. Vol. 210, no. 495–470. P. 307–357. DOI: 10.1098/rsta.1911.0009
  23. 23. Nikitin M. N., Satonin A. V. (2022). Numerical simulation of water spray evaporation in a turbulent air flow. IoP Conference Series. (In Press).
  24. 24. Tanner F. X. (1997). Liquid Jet Atomization and Droplet Breakup Modeling of Non-Evaporating Diesel Fuel Sprays. SAE transactions, 106, 127–140.
  25. 25. Kaario O., Larmi M., Tanner F. X. (2002). Non-evaporating liquid spray simulations with the ETAB and WAVE droplet breakup models. ILLAS Europe Proceedings.
  26. 26. Beji T., Merci B. (2018). A Detailed Investigation on the Effect of the Sherwood and Nusselt Number Modelling for the Heating and Evaporation of a Single Suspended Water Droplet J. Phys.: Conf. Ser. 1107 062002
  27. 27. Wolfram Research. (2008). LinearModelFit, Wolfram Language function, https://reference.wolfram.com/language/ref/LinearModelFit.html.
  28. 28. Akaike H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19 (6): 716–723, doi:10.1109/TAC.1974.1100705
  29. 29. Weisstein E. W. Student’s t-Distribution. From MathWorld – A Wolfram Web Resource. https://mathworld.wolfram.com/Studentst-Distribution.html (accessed on 2022).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library