- Код статьи
- S0002331025040054-1
- DOI
- 10.31857/S0002331025040054
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 4
- Страницы
- 62-89
- Аннотация
- В работе представлен обзор механизмов выделения газовых продуктов деления (ГПД) в оксидном и нитридном топливе, а также современных методов их моделирования. Разработана схема, отражающая текущее представление о процессах выделения ГПД, включая внутризеренную диффузию, коалесценцию, рост пузырьков на границах зерен и формирование газовых туннелей. Особое внимание уделено анализу атомистических подходов (DFT, MD), которые позволяют оценить влияние типа топлива, его стехиометрии и дефектов кристаллической решетки на механизмы миграции ГПД. Выполнено сопоставление расчетных значений энергии активации, полученных методами DFT и MD, с экспериментальными данными. Составлены перечни наиболее предпочтительных вакансий для нитридного и оксидного топлива, выявлены расхождения и проанализированы их причины. Рассмотрены диффузионная и кинетическая модели, используемые в топливных кодах: их особенности и роль в прогнозировании выхода ГПД. Отмечены ключевые неразрешенные вопросы, требующие дальнейших исследований, в том числе: механизмы зарождения ГПД внутри зерна и на его поверхности, роль границ зерен в формировании туннелей и механизмы, описывающие взрывное выделение газа при высоких выгораниях. Работа подчеркивает необходимость комплексного подхода, включающего экспериментальные исследования и совершенствование моделей топливных кодов с применением атомистических и CFD-подходов для повышения точности прогнозирования поведения топлива при различных условиях эксплуатации твэлов.
- Ключевые слова
- нитридное топливо оксидное топливо ксенон криптон газовые продукты деления ГПД топливные коды молекулярная динамика CFD
- Дата публикации
- 14.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 13
Библиография
- 1. Pizzocri D., Barani T., Luzzi L. SCIANTIX: A new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes // J. Nucl. Mater. 2020. V. 532. P. 152042.
- 2. Uffelen P. Van et al. Analysis of reactor fuel rod behavior // Handbook of Nuclear Engineering. Boston, MA: Springer US, 2010. P. 1519–1627.
- 3. Rest J. et al. Fission gas release from UO2 nuclear fuel: A review // J. Nucl. Mater. Elsevier B.V., 2019. V. 513. P. 310–345.
- 4. Lassmann K., Benk H. Numerical algorithms for intragranular fission gas release // J. Nucl. Mater. 2000. V. 280. № 2. P. 127–135.
- 5. Tonks M. et al. Unit mechanisms of fission gas release: Current understanding and future needs // J. Nucl. Mater. Elsevier B.V., 2018. V. 504. P. 300–317.
- 6. Шпильрайн Э.Э., Сковородько С.Н., Мозговой А.Г. Растворимость инертных газов в жидко-металлических теплоносителях // Теплофизика высоких температур. 2000. T. 38. № 3. C. 407–411.
- 7. Van Uffelen P. et al. A review of fuel performance modelling // Journal of Nuclear Materials. Elsevier B.V., 2019. V. 516. P. 373–412.
- 8. Aybar H.S., Ortego P. A review of nuclear fuel performance codes // Prog. Nucl. Energy. 2005. V. 46. № 2. P. 127–141.
- 9. Ding M. et al. A review of the development of nuclear fuel performance analysis and codes for PWRs // Annals of Nuclear Energy. 2021. V. 163. P. 108542.
- 10. Dong B. et al. Review on models to evaluate coolant activity under fuel defect condition in PWR // Annals of Nuclear Energy. 2019. V. 124. P. 223–233.
- 11. Pastore G. et al. Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis // Nucl. Eng. Des. 2013. V. 256. P. 75–86.
- 12. Tanaka K. et al. Fission gas release and swelling in uranium–plutonium mixed nitride fuels // J. Nucl. Mater. 2004. V. 327, № 2–3. P. 77–87.
- 13. Grachev A.F. et al. Fission gas release from irradiated uranium-plutonium nitride fuel // At. Energy. 2020. V. 129, № 2. P. 103–107.
- 14. Porollo S.I., Mossev L.I., Konobeev Y.V. Investigation of fission product release from irradiated oxide and nitride nuclear fuel on high-temperature heating in helium flow // At. Energy. 2021. V. 130. № 2. P. 76–81.
- 15. Wang M. et al. Review of fission gas release in liquid metal reactor fuel cladding failure accident // Nucl. Eng. Des. 2024. V. 419. P. 112981.
- 16. Cong T. et al. Development and evaluation of fuel performance analysis code FuSPAC // Int. J. Adv. Nucl. React. Des. Technol. 2022. V. 4, № 3. P. 129–138.
- 17. Cong T., Chen H., Gu H. Upgradation of fission gas release model in the nuclear fuel analysis code FuSPAC // Prog. Nucl. Energy. 2023. V. 162. P. 104775.
- 18. Williamson R.L. et al. BISON: A flexible code for advanced simulation of the performance of multiple nuclear fuel forms // Nucl. Technol. 2021. V. 207. № 7. P. 954–980.
- 19. Gamble K.A. BISON: A flexible code for advanced simulation of the performance of multiple nuclear fuel forms. 2024. P. 39.
- 20. Geelhood K.J. et al. FAST-1.2: A computer code for thermal-mechanical nuclear fuel analysis under steady-state and transients. 2023.
- 21. Sartori E., Killeen J., Turnbull J.A. International fuel performance experiments (IFPE) database [Electronic resource] // NEA. 2010. URL: https://www.oecd-nea.org/jcms/pl_36358/international-fuel-performance-experiments-ifpe-database
- 22. IAEA. Improvement of computer codes used for fuel behaviour simulation (FUMEX-II). 2007. 133 p.
- 23. IAEA. Improvement of computer codes used for fuel behaviour simulation (FUMEX-III). 2013. 125 p.
- 24. Zullo G., Pizzocri D., Luzzi L. The SCIANTIX code for fission gas behaviour: Status, upgrades, separate-effect validation, and future developments // J. Nucl. Mater. 2023. V. 587. P. 154744.
- 25. Boldyrev A.V. et al. Fuel performance code BERKUT-U to simulate the in-pile behavior of a single oxide or nitride fuel rod for fast reactors // J. Nucl. Mater. 2025. V. 603. P. 155417.
- 26. Rossiter G., Peakman A. Development and validation of loss of coolant accident (LOCA) simulation capability in the ENIGMA fuel performance code for zirconium-based cladding materials // Nucl. Eng. Des. 2024. V. 416. P. 112767.
- 27. Peakman A., Rossiter G. Incorporation of uranium nitride fuel capability into the ENIGMA fuel performance code: Model development and validation // Nucl. Eng. Des. 2024. V. 429. P. 113604.
- 28. Luzzi L. et al. Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment // Nucl. Eng. Technol. 2021. V. 53. № 10. P. 3367–3378.
- 29. Barani T. et al. Assessing the PLEIADES/GERMINAL V3 fuel performance code against transmutation experiments in sodium fast reactors // Ann. Nucl. Energy. 2024. V. 203. P. 110526.
- 30. Williamson R.L. et al. Validating the BISON fuel performance code to integral LWR experiments // Nucl. Eng. Des. 2016. V. 301. P. 232–244.
- 31. Veprev D.P., Boldyrev A.V., Chernov S.Y. Validation of the BERKUT fuel rod module against mixed nitride fuel experimental data // Ann. Nucl. Energy. 2020. V. 135. P. 106963.
- 32. Rizk J.T. et al. Development of mechanistic fission gas release and swelling models for UN fuels in BISON. 2024. 62 p.
- 33. Geelhood K.J. et al. Frapcon-4.0: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup. 2015. 158 p.
- 34. Liao H. et al. Modification and update of FROBA-ROD code and its applications in fuel rod behavior analysis for PWRs // Ann. Nucl. Energy. 2019. V. 133. P. 900–915.
- 35. Geelhood K.J. et al. FRAPTRAN-2.0: A computer code for the transient analysis of oxide fuel rods. 2016. 226 p.
- 36. Giaccardi L. et al. Towards modelling defective fuel rods in TRANSURANUS: Benchmark and assessment of gaseous and volatile radioactive fission product release // Ann. Nucl. Energy. 2024. V. 197. P. 110249.
- 37. Williamson R.L. et al. BISON: A flexible code for advanced simulation of the performance of multiple nuclear fuel forms // Nucl. Technol. 2021. V. 207. № 7. P. 954–980.
- 38. Lyon W. et al. Fuel performance analysis capability in FALCON. 2002. 90 p.
- 39. Probert A., Watson J., Aitkaliyeva A. An assessment of UO2 and ATF concept fuel performance modeling demands against current experimental capabilities under LOCA conditions // Ann. Nucl. Energy. 2024. V. 205. P. 110581.
- 40. Zullo G. et al. Integral-scale validation of the SCIANTIX code for light water reactor fuel rods // J. Nucl. Mater. 2024. V. 601. P. 155305.
- 41. Scolaro A. et al. The OFFBEAT multi-dimensional fuel behavior solver // Nucl. Eng. Des. 2020. Vol. 358, № June 2019. P. 110416.
- 42. Verma L. et al. Extending the validation database of OFFBEAT fuel performance code for LOCA scenarios // TopFuel 2024. 2024. P. 11.
- 43. Zabudko L.M. et al. Status on performance study of mixed nitride fuel pins of BREST reactor type // Nucl. Eng. Des. 2021. V. 384. P. 111430.
- 44. Tarasov V.I., Ozyin V.D., Veshchunov M.S. Simulation of radioactive fission gas release from defective PWR fuel rod using the MFPR/R mechanistic code // J. Nucl. Mater. 2023. V. 583. P. 154536.
- 45. Lainet M. et al. GERMINAL, a fuel performance code of the PLEIADES platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors // J. Nucl. Mater. 2019. V. 516. P. 30–53.
- 46. Germain A. et al. Modeling of fission product release during severe accidents with the fuel performance code ALCYONE // Nucl. Eng. Des. 2022. V. 393. P. 111778.
- 47. Introini C. et al. ALCYONE: the fuel performance code of the PLEIADES platform dedicated to PWR fuel rods behavior // Ann. Nucl. Energy. V. 207. P. 110711.
- 48. Lemehov S.E. et al. MACROS benchmark calculations and analysis of fission gas release in MOX with high content of plutonium // Prog. Nucl. Energy. 2012. V. 57. P. 117–124.
- 49. Luzzi L. et al. Assessment of INSPYRE-extended fuel performance codes against the SUPERRACT-1 fast reactor irradiation experiment // Nucl. Eng. Technol. V. 55. № 3. P. 884–894.
- 50. Moal A., Georgenthum V., Marchand O. SCANAIR: A transient fuel performance code // Nucl. Eng. Des. 2014. V. 280. P. 150–171.
- 51. Matzke H., Spino J. Formation of the rim structure in high burnup fuel // J. Nucl. Mater. 1997. V. 248. P. 170–179.
- 52. Williamson R.L. et al. Multi-dimensional simulation of LWR fuel behavior in the BISON fuel performance code. 2016. V. 68, № 11.
- 53. Grachev A.F. et al. Results of studies of BN-600 fuel rods with mixed uranium-plutonium nitride fuel and CHS68-id c.d. steel cladding // At. Energy. 2019. V. 126. № 3. P. 160–166.
- 54. Vathonne E. et al. Determination of krypton diffusion coefficients in uranium dioxide using atomic scale calculations // Inorg. Chem. 2017. V. 56. № 1. P. 125–137.
- 55. Crocombette J.P. Ab initio energetics of some fission products (Kr, I, Cs, Sr and He) in uranium dioxide // J. Nucl. Mater. 2002. V. 305. № 1. P. 29–36.
- 56. Muntaha M.A. et al. Impact of grain boundary and surface diffusion on predicted fission gas bubble behavior and release in UO2 fuel // J. Nucl. Mater. 2024. V. 594. P. 155032.
- 57. Petit T. et al. Location of krypton atoms in uranium dioxide // J. Nucl. Mater. 1999. V. 275. № 1. P. 119–123.
- 58. Andersson D.A. et al. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO(2-x)- Implications for nuclear fuel performance modeling // J. Nucl. Mater. 2014. V. 451. № 1–3. P. 225–242.
- 59. Murphy S.T. et al. Free energy of Xe incorporation at point defects and in nanovoids and bubbles in UO2 // Phys. Rev. B. 2012. V. 85. № 14. P. 144102.
- 60. Thompson A.E., Wolverton C. Pathway and energetics of xenon migration in uranium dioxide // Phys. Rev. B. 2013. V. 87. № 10. P. 104105.
- 61. Andersson D.A. et al. U and Xe transport in UO2±x: Density functional theory calculations // Phys. Rev. B. 2011. V. 84. № 5. P. 054105.
- 62. Grimes R.W., Catlow C.R.A. The stability of fission products in uranium dioxide // Philos. Trans. R. Soc. London. Ser. A Phys. Eng. Sci. 1991. V. 335. № 1639. P. 609–634.
- 63. Merikar P.V. et al. Thermodynamics of fission products in UO2±x // J. Phys. Condens. Matter. 2009. V. 21. № 43. P. 435602
- 64. Miekely W., Felix F. Effect of stoichiometry on diffusion of xenon in UO2 // J. Nucl. Mater. 1972. V. 42. № 3. P. 297–306.
- 65. Yang L., Wirth B.D. Evolution of pressurized xenon bubble and response of uranium dioxide matrix: A molecular dynamics study // J. Nucl. Mater. 2021. V. 544. P. 152730.
- 66. Jelea A., Pelleng R.J.-M., Ribeiro F. An atomistic modeling of the xenon bubble behavior in the UO2 matrix // J. Nucl. Mater. 2014. V. 444. № 1–3. P. 153–160.
- 67. Thompson A.E., Meredig B., Wolverton C. Corrigendum: An improved interatomic potential for xenon in UO2: a combined density functional theory/generic algorithm approach (2014 J. Phys.: Condens. Matter 26105501) // J. Phys. Condens. Matter. 2014. V. 26. № 22. P. 229501.
- 68. Xia Y. et al. Molecular dynamics simulations of Xe behaviors at the grain boundary in UO2 // Metals. 2022. V. 12. № 5. P. 763.
- 69. Yang L., Kaltsoyannis N. Incorporation of Kr and Xe in uranium mononitride: A density functional theory study // J. Phys. Chem. C. 2021. V. 125. № 48. P. 26999–27008.
- 70. Claisse A. et al. Transport properties in dilute UN(X) solid solutions (X = Xe, Kr) // Phys. Rev. B. 2016. V. 94. № 17. P. 174302.
- 71. Li J.J. et al. The incorporation of xenon at point defects and bubbles in uranium mononitride // J. Nucl. Mater. 2023. V. 586. P. 154656.
- 72. Kligfel M. et al. Towards a multiscale approach for assessing fission product behaviour in UN // J. Nucl. Mater. 2013. V. 442. № 1–3. P. 253–261.
- 73. Cooper M.W.D. et al. Simulation of radiation driven fission gas diffusion in UO2, ThO2 and PuO2 // J. Nucl. Mater. 2016. V. 481. P. 125–133.
- 74. Matzke H.J. Gas release mechanisms in UO2-a critical review // Radiat. Eff. 1980. V. 53. № 3–4. P. 219–242.
- 75. Garcia P. et al. A study of xenon aggregates in uranium dioxide using X-ray absorption spectroscopy // J. Nucl. Mater. 2006. V. 352. № 1–3. P. 136–143.
- 76. Nogita K., Une K. High resolution TEM observation and density estimation of Xe bubbles in high burnup UO2 fuels // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 1998. V. 141. № 1–4. P. 481–486.
- 77. Cornell R.M. The growth of fission gas bubbles in irradiated uranium dioxide // Philos. Mag. 1969. V. 19. № 159. P. 539–554.
- 78. Miekely W., Felix F. Effect of stoichiometry on diffusion of xenon in UO2 // J. Nucl. Mater. 1972. V. 42. № 3. P. 297–306.
- 79. Kocevski V. et al. Development and application of a uranium mononitride (UN) potential: Thermomechanical properties and Xe diffusion // J. Nucl. Mater. 2022. V. 562. P. 153553.
- 80. Kocevski V., Cooper M.W.D., Andersson D.A. Modeling of fission gas diffusion and release for doped // J. Nucl. Mater. 2023. V. 584. P. 154575.
- 81. Yang L., Kaltsoyannis N. Incorporation and migration of xenon in uranium-plutonium mixed nitride. A density functional theory study // J. Nucl. Mater. 2023. V. 577. P. 154330.
- 82. Cooper M.W.D. et al. Simulations of self- and Xe diffusivity in uranium mononitride including chemistry and irradiation effects // J. Nucl. Mater. 2023. V. 587. P. 154685.
- 83. Ma H. et al. Interaction between Xe bubbles and grain boundaries as well as the influences on structural evolution in UO2: A molecular dynamics simulation // J. Nucl. Mater. 2024. V. 594. P. 155039.
- 84. Guo Z. et al. Temperature effects on Xe bubble structure and grain boundary migration in UO2: A molecular dynamics simulation // J. Mater. Res. Technol. 2025. V. 35. P. 743–753.
- 85. Zacharie I. et al. Thermal treatment of uranium oxide irradiated in pressurized water reactor: Swelling and release of fission gases // J. Nucl. Mater. 1998. V. 255. № 2–3. P. 85–91.
- 86. Guo J. et al. Investigation of the fission gas release and grain boundary percolation in oxide fuels: A COMSOL multiphysics-based study // Nucl. Eng. Des. 2024. Vol. 427. P. 113400.
- 87. Yun Y. et al. Atomic diffusion mechanism of Xe in UO2 // J. Nucl. Mater. 2008. V. 378. № 1. P. 40–44.
- 88. Kleykamp H. The chemical state of the fission products in oxide fuels // J. Nucl. Mater. 1985. V. 131. № 2–3. P. 221–246.
- 89. Speight M.V., Turnbull J.A. Enhanced fission-product release by grain-boundary diffusion // J. Nucl. Mater. 1977. V. 68. № 2. P. 244–249.
- 90. Turnbull J.A. et al. The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide // J. Nucl. Mater. 1982. V. 107. № 2–3. P. 168–184.
- 91. Lewis B.J. Fission product release from nuclear fuel by recoil and knockout // J. Nucl. Mater. 1987. V. 148. № 1. P. 28–42.
- 92. Katsumi U., Shinji K. Fission gas release during post irradiation annealing of BWR fuels // J. Nucl. Sci. Technol. 1990. V. 27. № 11. P. 1002–1016.
- 93. Rothwell E. The release of kr85 from irradiated uranium dioxide on post-irradiation annealing // J. Nucl. Mater. 1962. V. 5. № 2. P. 241–249.
- 94. Pastore G. et al. Modeling of transient fission gas behavior in oxide fuel and application to the BISON code // Proc. Enlarg. Halden Program. Gr. Meet. Roros, Norway-2014. P. 12–16.
- 95. Booth A.H. A method of calculating fission gas diffusion from UO2 // Atomic Energy of Canada Limited, AECL (Report). 1976. P. 22.
- 96. Iqbal M.J., Mirza N.M., Mirza S.M. Kinetic simulation of fission product activity in primary coolant of typical PWRS under power perturbations // Nucl. Eng. Des. 2007. V. 237. № 2. P. 199–205.
- 97. Chun M.H., Tak N.I., Lee S.K. Development of a computer code to estimate the fuel rod failure using primary coolant activities of operating PWRS // Ann. Nucl. Energy. 1998. V. 25. № 10. P. 753–763.
- 98. Beck S.D. The diffusion of radioactive fission products from porous fuel elements // Jurnal Sains dan Seni ITS. 1960. V. 6. № 1. 51–66 p.
- 99. Kidson G.V. A generalized analysis of the cumulative diffusional release of fission product gases from an “Equivalent Sphere” of UO2 // J. Nucl. Mater. 1980. V. 88. № 2–3. P. 299–308.
- 100. Forsberg K., Massih A.R. Diffusion theory of fission gas migration in irradiated nuclear fuel UO2 // J. Nucl. Mater. 1985. V. 135. № 2–3. P. 140–148.
- 101. Dong B. et al. CFD study on mechanisms of fission gas burst release from defective fuel rods of a typical PWR // Ann. Nucl. Energy. 2020. V. 140. P. 107089.