ОЭММПУИзвестия Российской академии наук. Энергетика Bulletin of the Russian Academy of Sciences. Energetics

  • ISSN (Print) 0002-3310
  • ISSN (Online) 3034-6495

ОБОСНОВАНИЕ ПУТЕЙ РАЗВИТИЯ ГАЗОТРАНСПОРТНОЙ СЕТИ В УСЛОВИЯХ ЧС В ГАЗОВОЙ ОТРАСЛИ

Код статьи
S0002331025040022-1
DOI
10.31857/S0002331025040022
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 4
Страницы
16-27
Аннотация
Для сложившейся структуры газотранспортной сети России характерно наличие критически важных объектов, потеря работоспособности кото- рых не может быть компенсирована ни одним из рассматриваемых ранее мероприятий. Поэтому необходимо обоснование развития газотранспорт- ной сети с созданием дополнительных газотранспортных мощностей вне дуг существующего графа. Данная задача может решаться путем сегменти- рования существующей сети на простые многоугольники с возможностью создания дуг, соединяющих ранее не связанные узлы, т.е. интересны мно- гоугольники, начиная с четырехугольника. Удельная стоимость создания таких дуг в первом приближении на порядок выше удельной стоимости создания дополнительных дуг в существующих коридорах магистральных газопроводов. Авторами статьи предложена математическая модель для ре- шения этой задачи. Представлены результаты исследования на агрегиро- ванной расчетной схеме газотранспортной сети России, сделаны выводы о работоспособности предложенного подхода.
Ключевые слова
газовая отрасль критически важные объекты дефициты газа
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Аварии на магистральных газопроводах в России в 2018–2019 годах. https://ria.ru/20190728/1556953028.html
  2. 2. Топ-5 самых крупных и разрушительных аварий на газопроводах. https://sila-sibiri-rabota.ru/avarii-na-gazoprovodax
  3. 3. Cендеров С.М., Рабчук В.И., Еделев А.В. Особенности формирования перечня критически важных объектов газотранспортной сети России с учетом требований энергетической безопасности и возможные меры минимизации негативных последствий от чрезвычайных ситуаций на таких объектах / Известия Российской академии наук. Энергетика, 2016, № 1. С. 70–78.
  4. 4. Senderov S., Edelev A. Formation of a list of critical facilities in the gas transportation system of Russia in terms of energy security / Energy, 2017. https://doi.org/10.1016/J.ENERGY.2017.11.063
  5. 5. Vorobev S., Edelev A. Analysis of the importance of critical objects of the gas industry with the method of determining critical elements in networks of technical infrastructures / Management of Large-Scale System Development (MLSD), 2017 Tenth International Conference. IEEE, 2017. https://doi.org/10.1109/MLSD.2017.8109707
  6. 6. Vorobev S., Edelev A., Smirnova E. Search of critically important objects of the gas industry with the method of determining critical elements in networks of technical infrastructures / Methodological Problems in Reliability Study of Large Energy Systems (RSES2017). E3S Web Conf. Volume 25, 2017. https://doi.org/10.1051/e3sconf/20172501004
  7. 7. Senderov S., Kruppnev D. Energy security and critical facilities of energy systems: methodology and practice of their identification on the example of Russia's gas and electric power industries, Energy Systems Research. 2019. Т. 2. № 2 (6). P. 41–50.
  8. 8. Kрупенев Д.С. Принципы определения критически важных объектов электроэнергетических систем / Методические вопросы исследования надежности больших систем энергетики. Международный научный семинар им. Ю.Н. Руденко: В 2-х книгах. Отв. редактор Воропай Н.И., 2018. С. 329–337.
  9. 9. Krupenev D., Boyarkin D., Iakubovskii D. Improvement in the computational efficiency of a technique for assessing the reliability of electric power systems based on the Monte Carlo method, Reliability Engineering & System Safety. 2020. T. 204.
  10. 10. Senderov S., Vorobev S., Edelev A. Search of critically important combinations of objects of the gas industry from the positions of the system operability / Rudenko International Conference "Methodological problems in reliability study of large energy systems" (RSES2018). E3S Web Conf. Volume 58, 2018. https://doi.org/10.1051/e3sconf/20185803002
  11. 11. Sesini M., Giarola S., Hawkes A.D. The impact of liquefied natural gas and storage on the EU natural gas infrastructure resilience, Energy, Volume 209, 2020, 118367. https://doi.org/10.1016/j.energy.2020.118367
  12. 12. Jiang Q., Cai B., Zhang Y., Xie M., Liu C. Resilience assessment methodology of natural gas network system under random leakage. Reliability Engineering & System Safety, Volume 234, 2023, 109134. https://doi.org/10.1016/j.ress.2023.109134
  13. 13. Yu W., Song S., Li Y., Min Y., Huang W., Wen K., Gong J. Gas supply reliability assessment of natural gas transmission pipeline systems. Energy 2018, 162, p. 853-870.
  14. 14. Chi L., Su H., Zio E., Qadrdan M., Zhou J., Zhang L., Fan L., Yang Z., Xie F., Zuo L., Zhang J. A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model. Energy, Volume 263, Part B, 2023, 125740. https://doi.org/10.1016/j.energy.2022.125740
  15. 15. Chi L., Su H., Zio E., Qadrdan M., Li X., Zhang L., Fan L., Zhou J., Yang Z., Zhang J. Data-driven reliability assessment method of Integrated Energy Systems based on probabilistic deep learning and Gaussian mixture Model-Hidden Markov Model. Renewable Energy. Volume 174, 2021, p. 952-970. https://doi.org/10.1016/j.renene.2021.04.102
  16. 16. Yu W., Huang W., Wen Y., Li Y., Liu H., Wen K., Gong J., Lu Y. An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis, Reliability Engineering & System Safety, Volume 212, 2021, 107651. https://doi.org/10.1016/j.ress.2021.107651
  17. 17. Thompson J.R., Frezza D., Necioglu B., Cohen M.L., Hoffman K., Rosfjord K. (2019). Inter-dependent Critical Infrastructure Model (ICIM): An agent-based model of power and water infrastructure. International Journal of Critical Infrastructure Protection. Volume 24, p. 144-165.
  18. 18. Kai L., Ming W., Weihua Z., Jinshan W., Xiaoyong Y. (2018). Vulnerability analysis of an urban gas pipeline network considering pipeline-road dependency. International Journal of Critical Infrastructure Protection Volume 23, p. 79-89.
  19. 19. Tichy L. (2019). Energy infrastructure as a target of terrorist attacks from the islamic state in Iraq and Syria. International Journal of Critical Infrastructure Protection. https://doi.org/10.1016/j.ijcip.2019.01.003
  20. 20. Tsavdaroglou M., Al-Jibouri S.H.S., Bles T., Halman, J.I.M. (2018). Proposed methodology for risk analysis of interdependent critical infrastructures to extreme weather events. International Journal of Critical Infrastructure Protection Volume 21, p. 57-71.
  21. 21. Praks P., Kopusfinskas V. (2019). Node importance analysis of a gas transmission network with evaluation of a new infrastructure by ProGasNet. CRITIS2018, LNCS11260, pp. 3-16, 2019. https://doi.org/10.1007/978-3-030-05849-4_1
  22. 22. Zio E., 2016. Challenges in the vulnerability and risk analysis of critical infrastructures. Reliability Engineering & System Safety, 152, pp. 137-150.
  23. 23. Zio E., 2009. Reliability engineering: Old problems and new challenges. Reliability Engineering & System Safety, 94(2), pp. 125-141.
  24. 24. Apostolakis G.E., 2004. How useful is quantitative risk assessment? Risk analysis, 24(3), pp. 515–520.
  25. 25. Liu H., Davidson R.A. and Apanasovich T.V., 2008. Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms. Reliability Engineering & System Safety, 93(6), pp. 897–912.
  26. 26. Cuadra L., Salcedo-Sanz S., Del Ser J., Jiménez-Fernández S. and Geem Z.W., 2015. A critical review of robustness in power grids using complex networks concepts. Energies, 8(9), pp. 9211–9265.
  27. 27. Ouyang M., 2014. Review on modeling and simulation of interdependent critical infrastructure systems. Reliability engineering & System safety, 121, pp. 43–60.
  28. 28. Wang S., Hong L. and Chen X., 2012. Vulnerability analysis of interdependent infrastructure systems: A methodological framework. Physica A: Statistical Mechanics and its applications, 391(11), pp. 3323–3335.
  29. 29. Johansson J., Hassel H. Modelling, simulation and vulnerability analysis of interdependent technical infrastructures. pp. 49–66 in Hokstad P, Utne IB, Vatn J (eds). Risk and Interdependencies in Critical Infrastructures: A Guideline for Analysis. London: Springer-Verlag, 2012.
  30. 30. Экспорт Российской Федерации важнейших товаров в 2012–2023 году (по данным ФТС России) http://customs.ru/index.php?option=com_newsfts&view=category&id=52&Itemid=1978&limitstart=60
  31. 31. ИнфоТЭК Ежемесячный нефтегазовый журнал. № 1, 2022 г. С. 150.
  32. 32. Министерство энергетики Российской Федерации. Статистика. http://minenergo.gov.ru/activity/statistic
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека