RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Энергетика Bulletin of the Russian Academy of Sciences. Energetics

  • ISSN (Print) 0002-3310
  • ISSN (Online) 3034-6495

Additional Conditions in Boundary Value Problems of Heat Conduction (Review)

PII
10.31857/S0002331024020053-1
DOI
10.31857/S0002331024020053
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
63-92
Abstract
A review of studies related to the use of additional boundary conditions (ADBs) and additional sought functions (ADFs) in obtaining analytical solutions to heat conduction problems is presented. ADВs allow the equation to be executed at the boundaries, which leads to its execution inside the domain, excluding direct integration over the spatial coordinate. ADF allows one to reduce a partial differential equation to an ordinary differential equation, from the solution of which the eigenvalues of the boundary value problem are found. Eigenvalues in classical methods are found from the solution of the Sturm–Liouville boundary value problem formulated in the domain of a spatial variable. Consequently, the method used in this work leads to another algorithm for their determination, based on the solution of a temporary differential equation, the order of which is determined by the number of approximations of the resulting solution. In a problem based on determining the front of a temperature disturbance, the equivalence of solutions to the parabolic and hyperbolic heat equations was found. And, in particular, a number of approximations have been found that limit the speed of propagation of a thermal wave in the solution of a parabolic equation to a value equal to its real value for a specific material, at which it coincides with the solution of the hyperbolic equation.
Keywords
краевые задачи аналитические решения ДИФ ДГУ конечная скорость распространения теплоты фронт температурного возмущения параболические и гиперболические уравнения теплопроводности
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Карташов Э.М. Аналитические методы в теории теплопроводности твердых тел. М.: Высшая школа, 2001. 550 с.
  2. 2. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. 600 с.
  3. 3. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Изд–во МГУ, 1999. 798 с.
  4. 4. Канторович Л.B. Использование идеи метода Галеркина в методе приведения к обыкновенным дифференциальным уравнениям // Прикл. мат. и механ. 1942. Т. 6. № 1. С. 31–40.
  5. 5. Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. Л.: Физматгиз, 1962. 708 с.
  6. 6. Беляев Н.М., Рядно А.А. Методы нестационарной теплопроводности. М.: Высшая школа, 1978. 328 с.
  7. 7. Био М. Вариационные принципы в теории теплообмена. М.: Энергия, 1975. 208 с.
  8. 8. Кот В.А. Метод взвешенной температурной функции // Инженерно–физический журн. 2016. Т. 19. № 1. С. 183–202.
  9. 9. Глазунов Ю.Т. Вариационные методы. М.; Ижевск: НИЦ “Регулярная и хаотическая динамика”; Институт компьютерных исследований. 2006. 470 с.
  10. 10. Гудмен Т. Применение интегральных методов в нелинейных задачах нестационарного теплообмена // Проблемы теплообмена. Сб. науч. тр. М.: Атомиздат, 1967. С. 41–96.
  11. 11. Кудинов И.В., Кудинов В.А. Аналитические решения параболических и гиперболических уравнений тепломассопереноса. М.: ИНФРА–М, 2013. 391 с.
  12. 12. Кудинов И.В., Еремин А.В., Трубицын К.В., Стефанюк Е.В. Модели термомеханики с конечной и бесконечной скоростью распространения теплоты. М.: Проспект, 2020. 224 с.
  13. 13. Карташов Э.М., Кудинов В.А., Калашников В.В. Теория тепломассопереноса: решение задач для многослойных конструкций. М.: Издательство Юрайт, 2018. 435 с.
  14. 14. Цой П.М. Системные методы расчета краевых задач тепломассопереноса. М: Издательство МЭИ, 2005. 568 с.
  15. 15. Фёдоров О.М. Граничный метод решения прикладных задач математической физики. Новосибирск: Наука, 2000. 220 с.
  16. 16. Кудинов И.В., Котова Е.В., Кудинов В.А. Метод получения аналитических решений краевых задач на основе определения дополнительных граничных условий и дополнительных искомых функций. Сибирский журн. вычислительной математики. Новосибирск, 2019. Т. 22. С. 153–165.
  17. 17. Петухов Б.С. Теплообмен и сопротивление при ламинарном течении жидкости в трубах. М.: Энергия, 1967. 412 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library