ОЭММПУИзвестия Российской академии наук. Энергетика Bulletin of the Russian Academy of Sciences. Energetics

  • ISSN (Print) 0002-3310
  • ISSN (Online) 3034-6495

Термодинамический анализ тринарных энергоустановок

Код статьи
10.31857/S0002331024010091-1
DOI
10.31857/S0002331024010091
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 1
Страницы
70-81
Аннотация
Парогазовые установки, работающие на природном газе, являются одними из наиболее эффективных и экологически безопасных энергетических комплексов. Высокая энергетическая эффективность и низкие удельные выбросы достигаются, прежде всего, за счет высокой среднеинтегральной температуры подвода теплоты в цикле Брайтона–Ренкина. При этом основными источниками потерь энергии являются потери теплоты в конденсаторе паротурбинной установки и потери теплоты с уходящими газами котла-утилизатора. Настоящая работа посвящена термодинамическому анализу перехода от традиционных бинарных циклов к тринарным, в которых помимо газового и пароводяного контуров имеется дополнительный контур на низкокипящем теплоносителе. По результатам проведенной термодинамической оптимизации структуры и параметров тепловых схем установлено, что использование органического цикла Ренкина с фреоном R236ea для утилизации низкопотенциальной теплоты уходящих газов энергоустановки, работающей с газовой турбиной ГТЭ-160, позволяет достичь электрического КПД нетто, равного 51.3%, что выше эффективности одноконтурных парогазовых установок при аналогичных начальных параметрах на 2.2% и двухконтурных – на 0.5%. Повышенный уровень энергоэффективности обуславливается ростом тепловой экономичности паротурбинной части за счет добавления подогревателей низкого давления, а также эффективной утилизацией теплоты уходящих газов в контуре с низкокипящим теплоносителем.
Ключевые слова
парогазовая установка тринарный цикл органический цикл Ренкина энергоэффективность
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Okajima Y., Torigoe T., Mega M., Kuwabara M., Okaya N. Development of Advanced TBC for 1650°C Class Gas Turbine. ITSC2021. ASM International. 2021. С. 695–699.
  2. 2. Morimoto K., Matsumura Y., Iijima T., Wakazono S., Kataoka M., Yuri M. Validation Results of 1650°C Class JAC Gas Turbine at T-point 2 Demonstration Plant. Mitsubishi Heavy Industries Technical Review. 2021. Т. 58. № 1. С. 12.
  3. 3. Ольховский Г. Г. Наиболее мощные энергетические ГТУ (обзор) // Теплоэнергетика. 2021. № 6. С. 87–93.
  4. 4. Киндра В.О., Наумов В. Ю., Скляр Н. С., Львов Д. Д., Максимов И. А. Тринарные энергетические циклы для высокоэффективного производства электроэнергии из ископаемого топлива // Новое в российской электроэнергетике. 2022. № 4. С. 7–25.
  5. 5. Bălănescu D.-T., Homutescu V.-M. Performance analysis of a gas turbine combined cycle power plant with waste heat recovery in Organic Rankine Cycle. Procedia Manufacturing. – 2019. Т. 32. С. 520–528.
  6. 6. Galashov N., Tsibulskiy S., Serova T. Analysis of the Properties of Working Substances for the Organic Rankine Cycle Based Database “REFPROP”. EPJ web of conferences. EDP Sciences. 2016. Т. 110. С. 01068.
  7. 7. Галашов Н.Н., Цибульский С. А. Параметрический анализ схемы парогазовой установки с комбинацией трех циклов для повышения кпд при работе в северных газодобывающих районах // Изв. Томского политехнического университета. 2019. Т. 330. № 5. С. 44–55.
  8. 8. Kindra V., Rogalev N., Osipov S., Zlyvko O., Naumov V. Research and Development of Trinary Power Cycles: 3. Inventions. Multidisciplinary Digital Publishing Institute. 2022. Т. 7. № 3. С. 56.
  9. 9. Киндра В.О., Рогалев Н. Д., Рогалев А. Н., Наумов В. Ю., Сабанова Е. Н. Термодинамическая оптимизация низкотемпературных циклов для теплоэнергетики // Новое в российской электроэнергетике. Учредители: Информационное агентство “Энерго-пресс”. № 5. С. 6–30.
  10. 10. Наумов В.Ю., Осипов С. К., Злывко О. В., Киндра В. О. Утилизация низкопотенциальной теплоты в углекислотных циклах Брайтона и Ренкина // Энергосбережение – теория и практика. 2022. С. 19–25.
  11. 11. Vannoni A., Giugno A., Sorce A. Integration of a flue gas condensing heat pump within a combined cycle: Thermodynamic, environmental and market assessment. Applied Thermal Engineering. 2021. Т. 184. С. 116276.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека