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Аналитические решения различных задач теплопроводности представлены, 
как правило, в виде бесконечных рядов и требуют знания корней харак-
теристического уравнения, для определения которых в настоящее время 
используются численные методы. В данной статье рассмотрена задача не-
стационарной теплопроводности полого сферического тела и аналитиче-
ский метод решения характеристического уравнения для граничных ус-
ловий второго рода. Предложены простые алгебраические выражения для 
определения собственных чисел характеристического уравнения. Ранее 
в работах авторов [6, 7, 8] были рассмотрены аналитические методы реше-
ния характеристических уравнений для плоских тел (однослойных и мно-
гослойных) при различных граничных условиях. Данная статья является 
дальнейшим развитием аналитических методов определения корней ха-
рактеристических уравнений.
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Аналитические методы теории теплопроводности тел классической формы (пла-
стина, шар, цилиндр) достаточно хорошо разработаны в литературе [1, 2, 3]. Клас-
сические методы удачно дополняют приближенные аналитические методы, позво-
ляющие эффективно решать широкий круг теплофизических задач [4]. Наиболее 
сложным этапом решения данных задач является определение собственных чисел 
характеристического уравнения. Решения этих уравнений в настоящее время полу-
чают исключительно численными методами [5]. Однако авторам в ряде работ [6, 7, 
8] удалось разработать аналитический метод решения данных уравнений. В статье 
[9] предложен аналитический метод исследования характеристических уравнений 
в задачах нестационарной теплопроводности сплошного сферического тела. Однако 
на практике могут иметь место случаи, когда изучаемая конструкция содержит по-
лость. Тогда расчет искомого неустановившегося температурного поля в математи-
ческом отношении существенно усложняется. В данной работе излагается инженер-
ный подход для решения такого рода задач. Проиллюстрируем его на конкретном 
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примере. Сформулируем рассматриваемый теплофизический процесс в полой сфере 
на основе следующих безразмерных соотношений
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Здесь использованы общепринятые обозначения [2]. Так, в частности, безраз-

мерное число подобия Ki (число Кирпичёва) представляет собой комплекс
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,                                                     (5)

где   qc – плотность теплового потока, 
Bm

м2 ; R – радиус наружной поверхности 

шара, м; λ – коэффициент теплопроводности материала, 
Bm

м C⋅ ° ; Tc – температура 

окружающей среды, °C; T0 – начальная температура тела, °C; ψ0
0=

R
R  – безразмер-

ный геометрический параметр; R0 – радиус внутренней поверхности шара, м.
Очевидно, что если ψ = 0, т.е. сферическое тело является сплошным, задача (1)–

(4) оказывается значительно проще и ее решение известно [1].
Решение рассматриваемой системы (1)–(4) может быть записано в виде
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где коэффициент Bn равен
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Если геометрический параметр  ψ0 = 0 (сплошное сферическое тело), то,  со-
гласно (7), следует, что Bn = 0. Подставляя зависимость (6) в граничное условие 
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на поверхности тела (3), находим характеристическое уравнение для определения 
собственных значений µn.
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В случае ψ0 = 0 формула (8) упрощается и принимает вид

tgµ  = µ.                                                              (9)

В работе [9] дано строгое аналитическое решение для зависимости (9), которое 
записывается следующим образом
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где n = 1, 2 , 3,...

Таблица 1. Первые шесть корней уравнения (8)

ψ0 µ1 µ2 µ3 µ4 µ5 µ6

0 4.4934 7.7253 10.9041 14.0662 17.2208 20.3713

0.1 4.5223 7.8466 11.1835 14.5553 17.9561 21.3782

0.2 4.6864 8.3781 12.1659 16.0084 19.8801 23.7686

0.3 5.0427 9.3142 13.7008 18.1330 22.5861 27.0503

0.4 5.6390 19.6992 15.8636 21.0618 26.2746 31.4950

0.5 6.5720 12.7214 18.9544 25.2118 31.4793 37.7250

0.6 8.0553 15.8113 23.6322 31.4688 39.3123 47.1592

0.7 10.6049 21.0117 31.4613 41.9220 52.3871 62.8546

0.8 15.7864 31.4556 47.1504 62.8517 78.5557 94.2610

0.9 31.4514 62.8495 94.2596

В таблице 1 приведены значения первых шести корней уравнения (8) для ряда 
величин параметра ψ0, рассчитанные численным методом. Из этой таблицы следует, 
что корни µn очень резко возрастают с повышением номера n и комплекса ψ0. По-
этому при сравнительно умеренных числах FO в решении (6) достаточно учитывать 
только первые слагаемые бесконечного ряда.

Наряду с табличными значениями собственных чисел µn уравнения (8) целе-
сообразно располагать также аналитическими зависимостями для их нахождения 
при любых ψ0. Используя математические рекомендации, приводимые в справоч-
нике [10], можно представить соотношение (8) в несколько иной форме, а именно
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Очевидно, что при ψ0 = 0 формула (11) эквивалентна выражению (9). В большин-
стве случаев при проведении практических расчетов имеет место условие ψ0µ2 >> 1 . 
Тогда (12) допустимо преобразовать к виду
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* ,                                                         (13)

где под условным числом Bi
* понимается величина
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а 
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Следует отметить, что характеристическое уравнение классического типа (13) 
исследовано весьма всесторонне [6, 7, 8, 9]. В дополнение к рекомендуемым ма-
тематическим методам определения корней уравнения вида (13) [4, 6, 8] авторами 
предлагаются также простые аналитические выражения расчета собственных чи-
сел bn, а именно
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при 5 < Bi
* < ∞, которые с инженерной точки зрения обладают вполне достаточной 

точностью. Так, в частности, если Bi
*= 1, то первое собственное значение b1, соглас-

но (16), будет равно
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что полностью соответствует табличной величине [1]. Если же, например, Bi
* = 10, 

то предпочтительнее будет формула (17). Тогда, в данном случае, находим
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Это число незначительно отличается от табличного [1].
Проиллюстрируем на конкретных примерах возможности предлагаемого мате-

матического приема для полого сферического тела. 

Допустим ψ0 = 0.2. Тогда, согласно формуле (14), получим  Bi
* =

−( )
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Этому значению условного числа  Bi
* соответствуют корни уравнения  (13) [1]   

b1 = 3.83676; b2 = 6.726; b3 = 9.7416; b4 = 12.8108; b5 = 15.9063 и далее находим  
µ1 = 4.796; µ2 = 8.4075; µ3 = 11.8395; µ4 = 16.0135; µ5 = 19.8829. Расхождение с таблич-
ными данными наиболее заметное имеет место только для первого числа µ1.

Повторим подобный расчет для ψ0 = 0.5. Тогда  Bi
* = =

0 5
0 5

0 5
2.

.
.  и, следовательно, 

получим [2] b1 = 3.2923; b2 = 6.3616; b3 = 9.4775; b4 = 12.6060; b5 = 15.7397, которые 
смещены на одну единицу по отношению к указанным в [1]. Далее находим искомые 
числа, которые будут соответственно равны µ1 = 6.5846; µ2 = 12.7232; µ3 = 18.9550; 
µ4 = 25.2120; µ5 = 31.4794. Наибольшее отклонение, по сравнению с табличными, 
имеет первый корень, которое составляет менее 0.2%. Остальные числа оказываются 
весьма близкими к табличным. С ростом порядкового номера n невязка существен-
но убывает. Нужно отметить, что рекомендуемый математический способ позволяет 
оценить искомые корни mn сверху. 

И, наконец, проведем аналогичные расчеты для повышенных величин ψ0 и, 

в частности, для варианта ψ0 = 0.8, для которого условное число  Bi
* =

−( )
=

1 0 8

0 8
0 05

2
.

.
. .  

Используя вышеизложенный подход, находим [1] b1 = 3.1574;  b2 = 6.2911;  
b3 = 9.4301; b4 = 12.5704; b5 = 15.7112 и окончательно вычисляем µ1 = 15.7870;  
µ2 = 31.4555; µ3 = 47.1505; µ4 = 62.820; µ5 = 78556. Сравнение этих величин корней 
с табличными свидетельствует о вполне приемлемой их точности. 

Таким образом, при умеренных и значительных ψ0 предлагаемый математиче-
ский способ нахождения собственных чисел µn сравнительно сложного характери-
стического уравнения (8) с помощью приведения его к существенно более просто-
му выражению (13) обладает достаточной с технической точки зрения точностью. 
При малых величинах ψ0 рассчитанные по предлагаемой методике первые корни µ1 
и µ2 могут рассматриваться как оценки сверху для искомых. Используя их в качестве 
исходных, можно затем определить нижнюю границу для фактического µ1 или µ2. 
Так, например, максимальное значение первого собственного числа µ1 при ψ0 = 0.2 
равно µ1 = 4.796. Подставляя эту величину в правую часть зависимости (11), находим
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Переходя к обратной функции тангенса, находим 0.8 µ1 = 3.7423, т.е. µ1 = 4.6778. 
Следовательно, при ψ0 = 0.2 первый корень µ1 оказывается в зоне 4.6778 < µ1 < 4.796. 
Причем нижняя оценка искомого корня µ1 (или µ2) ближе к фактической, чем 
верхняя.

В ряде случаев аналитический расчет первого собственного числа µ1 характери-
стического уравнения вида (12), являющегося наиболее важным, можно осущест-
влять по весьма простым математическим зависимостям. Так, например, если допу-

стить, что комплекс  1
5
40 1−( ) =ψ µ
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, то определение корня µ1 можно выполнить 

на основе соотношения
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которому, очевидно, соответствует параметр 
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Подобный подход можно использовать и  далее. Предположим, что 
1

7
60 1−( ) =ψ µ
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. Тогда искомый корень µ1 находим с помощью выражения
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Эта величина согласуется с параметром  ψ0 = 0.234. Аналогичные действия при-
менимы и для других значений комплекса {1 –ψ0}µ1.

Коэффициенты An бесконечного ряда, входящего в решение (6), находятся из на-
чального условия рассматриваемой задачи (4), из которого следует, что
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Умножая левую и правую части равенства (21) на комплекс ψ µ ψ2Kn n( ) и осу-

ществляя интегрирование в пределах ψ0 ÷ 1, получим формулу для определения An
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где процедура интегрирования элементарных функций не представляет существен-
ных трудностей.

Для частного случая (ψ0 = 0), т.е. сплошное сферическое тело) данное выражение 
принимает простой вид

 An
n n

=
2

3µ µcos
.                                                     (23)

В заключение отметим, что в предлагаемой работе показана возможность ис-
пользования сравнительно простых известных математических зависимостей для 
получения инженерного решения более сложных и более общих теплофизических 
задач, представляющих несомненный практический интерес.
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Analytical solutions to various problems of thermal conductivity are presented, 
as  a  rule, in  the  form of  infinite series and  require knowledge of  the  roots 
of the characteristic equation, for the determination of which numerical methods 
are currently used. In this article, the problem of unsteady thermal conductivity 
of a hollow spherical body and an analytical method for solving a characteristic 
equation for boundary conditions of the second kind are considered. Simple 
algebraic expressions for  determining the  eigenvalues of  the  characteristic 
equation are proposed. Earlier in the works of the authors [6, 7, 8], analytical 
methods for  solving characteristic equations for  flat bodies (single-layer 
and  multi-layer) under various boundary conditions were considered. This 
article is a further development of analytical methods for determining the roots 
of characteristic equations.

Keywords: Temperature field, thermal conductivity problems, characteristic 
equation, eigenvalues, analytical solution




