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Сформулирована задача определения температурного поля изотропного 
твердого тела с поглощающим проникающее излучение включением в виде 
шарового слоя. Реализуемая математическая модель процесса теплопере-
носа представляет собой смешанную задачу для системы трех уравнений 
в частных производных второго порядка параболического типа при нали-
чии нестационарного теплового источника в системе.
Предложен аналитический метод решения рассматриваемой задачи, вклю-
чающий два основных этапа. Первый этап сводится к нахождению реше-
ния задачи в пространстве изображений интегрального преобразования 
Лапласа с последующим его асимптотическим разложением. Использу-
емая процедура позволяет при больших значениях числа Фурье оценить 
протяженность и радиус границы зоны теплового возмущения. Второй 
этап, основанный на применении разработанного в работе конечного ин-
тегрального преобразования по пространственному переменному для трех-
слойной области, завершает процедуру построения аналитически замкну-
того решения исходной задачи нестационарной теплопроводности.
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ВВЕДЕНИЕ

В математической теории теплопроводности [1−5] специфическое положе-
ние занимает математическая модель процесса теплопереноса в изотропном 
твердом теле с поглощающим проникающее излучение сферическим включе-
нием [6−12]. Отмеченная специфика заключается в относительной простоте 
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исходной (базовой) математической модели и трудностях, возникающих при на-
хождении аналитического решения соответствующей задачи нестационарной 
теплопроводности. Данное обстоятельство объясняет отсутствие в настоящее 
время аналитического представления решения задачи для базовой математиче-
ской модели.

Указанные трудности усугубляются при наличии в анализируемой системе по-
глощающих включений других геометрических форм. В [13] разработана матема-
тическая модель “сосредоточенная емкость” процесса теплопереноса в прозрач-
ном для излучения твердом теле с поглощающим включением в виде шарового 
слоя. Реализуемая модель предполагает тепловую изоляцию его внешней границы 
и представляет собой смешанную задачу для уравнения в частных производных 
второго порядка параболического типа со специфическим краевым условием, фак-
тически учитывающим наличие термически тонкого шарового слоя в изучаемой 
системе. Теоретический и значимый практический интерес представляет базовая 
математическая модель процесса теплопереноса, не использующая гипотезу о том, 
что поглощающее включение является термически тонким, и учитывающая нали-
чие среды в шаровой полости. Нахождение аналитического решения рассматри-
ваемой задачи нестационарной теплопроводности – основная цель проведенных 
исследований.

ИСХОДНАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И ЕЕ ПРЕОБРАЗОВАНИЕ

В качестве объекта исследований рассматривается изотропное пространство 
с включением радиуса R в виде шарового слоя шириной ∆ = R –1. Шаровая по-
лость единичного радиуса заполнена средой (далее – внешней средой) с начальной 
температурой, равной начальной температуре объекта исследований. На объект ис-
следований воздействует поток излучения с плотностью мощности f, для которого 
он абсолютно прозрачен, но может поглощаться шаровым слоем.

В предположении, что тепловые контакты в анализируемой трехслойной системе 
являются идеальными, и с учетом ранее полученных результатов [13] математиче-
ская модель процесса теплопереноса в объекте исследований может быть представ-
лена в следующем виде:
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В математической модели (1) использованы следующие обозначения:
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где T (r, t) – температура в момент времени t в точках изучаемой системы, отстоя-
щих от центра шаровой полости радиуса r0 на расстоянии r; λ – теплопроводность;  
α – температуропроводность; T* – масштабная температура; индексы: 1 – изотроп-
ное пространство; 2 – поглощающий шаровой слой ширины ∆~; c − внешняя среда; 
0 – начальное значение.

Если воспользоваться стандартным приемом [1] и считать 

V fρ ρθ ρ ζ ρ χ ρ ρ, , ; , , ,Fo Fo Fo Fo( ) ( ) ( ) ( )  Λ                                (2)

то, согласно, (1), (2) приходим к математической модели для определения неизвест-
ной функции V(r, Fo):
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Математическая модель (3) представляет собой смешанную задачу для систе-
мы уравнений в частных производных второго порядка параболического типа. Те-
оретически эта задача может быть решена либо путем применения интегрального 
преобразования Лапласа по временному переменному FO, либо путем применения 
сингулярного интегрального преобразования по пространственному переменно-
му r. При этом следует заметить, что в первом случае мы сталкиваемся с пробле-
матичностью перехода из пространства изображений в пространство оригиналов, 
характерной для задач нестационарного теплопереноса в многослойных областях, 
а во втором – с проблемой разработки требуемого сингулярного интегрального пре-
образования [14−17].

Для преодоления возникших трудностей процедуру решения смешанной зада-
чи (3) разбиваем на два этапа. На первом этапе находим решение смешанной зада-
чи (3) в пространстве изображений интегрального преобразования Лапласа с после-
дующим его асимптотическим обращением [4]. Это позволяет при больших значе-
ниях числа Фурье оценить (с заданной степенью точности) радиус R* границы зоны 
теплового возмущения. На втором этапе с использованием конечного интегрального 
преобразования по пространственному переменному r для трехслойной области за-
вершаем решение исходной задачи. 

РЕШЕНИЕ СМЕШАННОЙ ЗАДАЧИ (3) В ПРОСТРАНСТВЕ ИЗОБРАЖЕНИЙ 
ИНТЕГРАЛЬНОГО ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

В пространстве изображений интегрального преобразования Лапласа

u s L V s L( , ) , ; ( , ) , ,ρ ρ ρ ζ ρ Fo Fo( )  ( ) Φ                               (4)

заданного парой линейных интегральных операторов [2, 3]
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математическая модель (3) может быть представлена в следующем виде:
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Воспользовавшись стандартными методами [18], находим решения обыкновен-
ных линейных дифференциальных уравнений второго порядка с постоянными ко-
эффициентами (6)−(8), удовлетворяющие условиям (9), (14), (15), и представляем 
их в виде, удобном для дальнейшего использования:
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Таким образом, для завершения процедуры решения смешанной задачи  (3) 
в пространстве изображений интегрального преобразования Лапласа (5) достаточно 
идентифицировать изображения  с sk k

( ){ } =1
4 .

Воспользовавшись равенствами (16)–(18) и условиями сопряжения (10)−(13), 
приходим к системе линейных алгебраических уравнений относительно изображе-
ний  с sk k

( ){ } =1
4 :
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c s c s c s R s4 2 3( ) ( ) ( ) ( , );= + + Ψ                                          (22)
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1( ) ( ) ( ) ( , ),
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ρΛ Λ Ψ− −( ){ } = − + ′                  (23)

так как, согласно (19),
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1
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и, как следствие,  Ψ Ψ( , ) ( , ).1 0 1s s≡ ≡ ′ρ  При  этом путем очевидных линейных 
преобразований совокупность уравнений (22), (23) может быть трансформирована 
к соответствующему эквивалентному виду:

c s s c s F s kk k k( ) ( ) ( ) ( ), , ;= + ∈{ }α 4 2 3
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k ks
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χ ρ

Преобразовав аналогичным образом совокупность уравнений (20), (21):

c s s c s kk k( ) ( ) ( ), , ;= ∈{ }β 1 2 3
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и сопоставив результаты, представленные равенствами (25), (26), приходим к систе-
ме двух линейных неоднородных алгебраических уравнений относительно изобра-
жений c1(s) и c4(s):

β α2 1 2 4 1( ) ( ) ( ) ( ) ( );s c s s c s F s− =  β α3 1 3 4 3( ) ( ) ( ) ( ) ( ),s c s s c s F s− =

решение которой имеет вид:
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2 3 3 2
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−
−
β
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где изображения αk s( ),  βk s( )  и F sk ( ) определены равенствами (25) и (26) ∀ ∈{ }k 2 3, .

Таким образом, решение исходной смешанной задачи (3) для системы уравне-
ний в частных производных второго порядка параболического типа в простран-
стве изображений интегрального преобразования Лапласа (5) в обозначениях (4) 
полностью определено равенствами (16)−(19), (24)−(27). При этом, как уже от-
мечалось ранее, непосредственный переход из пространства изображений в про-
странство оригиналов весьма проблематичен. Но для достижения основной цели 
проведенных исследований, полученный результат может быть использован для 
оценки радиуса R* границы зоны теплового возмущения при больших значениях 
числа Фурье.

Действительно, для оценки протяженности зоны теплового возмущения можно 
воспользоваться асимптотическим обращением интегрального преобразования Ла-
пласа [4]:

V L u s V( , ) , , ,ρ ρ ρFo
Fo Fo

= ( ) 








−1 1
2

1
2



а оценку радиуса R* границы этой зоны при больших значениях числа Фурье с уче-
том равенства (2) определять из условия 

θ ρρ ρ
' ( , ) .Fo

  > ∼
R

0

Не останавливаясь на специфике процедуры определения величины R*, далее 
радиус границы зоны теплового возмущения считаем известным. 

С учетом высказанных предположений исходная математическая модель  (3) 
трансформируется к виду:
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Для решения смешанной задачи, представленной математической моделью (28), 
обратимся к конечному интегральному преобразованию для трехслойной области, 
применяемому по пространственному переменному r = [0, R*].

ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ  
ПО ПРОСТРАНСТВЕННОМУ ПЕРЕМЕННОМУ r

Согласно представленной математической модели (28) и общей теории инте-
гральных преобразований [19, 20], весовая функция g(r) искомого интегрального 
преобразования определена равенством:
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а его ядро  K n( , )η ρ  и спектр собственных значений  ηn n{ } ≥  1  определены соответ-

ствующей краевой задачей:
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Воспользовавшись стандартными методами [18], находим частное решение урав-
нения (30), удовлетворяющее условию (33):
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и общие решения уравнений (31) и (32) соответственно:
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K c R c Rn R R n n n nη ρ η η ρ η η ρ
ρ

, cos sin( ) = ( ) −( )  + ( ) −( ) 
< < ∗    4 5  .          (41)

При этом, согласно представлениям (39) и (40) ядра искомого интегрального 
преобразования и условиям сопряжения (34) и (35) должны выполняться равенства:
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которые можно интерпретировать как систему двух линейных алгебраических урав-
нений относительно коэффициентов c2(ηn) и c3(ηn). Разрешив эту систему, получаем:
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              (42)

Далее, согласно представлениям (40) и (41) ядра искомого интегрального преоб-
разования и условиям сопряжения (36), (37) должны выполняться равенства:
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которые с учетом (42) трансформируются к следующим:
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c d c c d cn n n n n n4 2 1 5 5 1η η η η η η( ) = ( ) ( ) ( ) = ( ) ( ); ,                          (43)

где

d
R

d
R

dn
n

n
n

n5 2 3
1

1η
η

η
η
χ

η( ) = − ( ) − ( )










Λ
Λ( ) .                           (44)

Таким образом, согласно (39)–(44), для завершения процедуры идентификации 
искомого интегрального преобразования осталось идентифицировать спектр 
ηn n{ } ≥  1  его собственных значений и определить  c nn1 1η( ) ∀ ≥, .

Для идентификации спектра собственных значений  ηn n{ } ≥  1  воспользуемся 
представлением (41) ядра искомого интегрального преобразования, однородным 
краевым условием (38) и равенствами (43). В результате приходим к уравнению для 
определения собственных значений  ηn n{ } ≥  1 :
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где коэффициент d5(ηn) определен равенством (44), а d2(ηn) – равенством, входящим 
в систему (42). 

c1(ηn) является коэффициентом пропорциональности для ядра искомого инте-
грального преобразования, что непосредственно следует из результатов, представ-
ленных равенствами (39)−(43). А так как согласно общей теории интегральных пре-
образований [19, 20] ядро K(ηn, r) должно удовлетворять условиям нормировки с ве-
совой функцией g(r), определенной равенством (29), то с учетом (39)–(43) приходим 
к цепочке равенств:
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воспользовавшись которой и определяем нормирующий множитель
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       (46)

Таким образом, ядро K(ηn, r) искомого интегрального преобразования по про-
странственному переменному r ∈ [0, R*] полностью определено равенствами (39)–
(44), (46), спектр его собственных значений {ηn}n ≥ 1 – уравнением (45), а весовая 
функция g(r) – равенством (29).

РЕШЕНИЕ СМЕШАННОЙ ЗАДАЧИ (28)

Применив к математической модели (28) разработанное конечное интегральное 
преобразование по пространственному переменному r ∈ [0, R*] и, полагая
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где J(g) – единичная функция [2], приходим к задаче Коши относительно изобра-
жения Wn(FO) оригинала V(ρ, FO):
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Решение задачи Коши (48) может быть найдено с использованием стандарт-
ных методов [18] и представлено в виде, удобном для проведения вычислительных 
экспериментов:

W dn n

Fo

nFo Fo Fo( ) = ( ) − −( )



 ≥∫ Φ

0

2 0τ η τ τexp , ;                        (49)

Таким образом, согласно общей теории интегральных преобразований [19, 20], 
решение смешанной задачи, представленной математической моделью (28), может 
быть записано в следующем виде:
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где ядро K(ηn, r) использованного интегрального преобразования определено равен-
ствами (39)−(44), (46), спектр его собственных значений {ηn}n ≥ 1– уравнением (46), 
весовая функция g(r) – равенством (29), а изображение Wn(Fo)– равенствами (49) 
и (47).

Теоретический и значимый практический интерес представляет режим воздей-
ствия на объект исследований потока излучения постоянной плотности мощности 
f fρ,Fo  ( ) = −0 const . В этой простейшей ситуации функция
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Температурное поле трехслойной области в этом случае определяется как
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где функция  Wn(FO) определена равенством  (5),  d2(ηn) − вторым равенством 
в (42), c1(ηn) − равенством (46).

ЗАКЛЮЧЕНИЕ

Предложена математическая модель процесса теплопереноса в изотропном твер-
дом теле с поглощающим проникающее излучение включением в виде шарового 
слоя. Подобные задачи встречаются для разного рода технических устройств, кото-
рые используются в аэродинамике, физике плазмы, астрофизике и других отраслях 
науки и техники. Разработан аналитический метод решения соответствующей зада-
чи нестационарной теплопроводности, включающий две основные процедуры. Пер-
вая из них сводится к нахождению решения рассматриваемой задачи в пространстве 



74	 Аттетков, Котович

изображений интегрального преобразования Лапласа с последующим его асимпто-
тическим обращением, что позволяет при больших значениях числа Фурье оценить 
радиус границы зоны теплового возмущения. Завершающая процедура построения 
аналитически замкнутого решения исходной задачи основана на применении разра-
ботанного в работе конечного интегрального преобразования по пространственному 
переменному для трехслойной области.
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Theoretical studies on the problem of laser initiation of explosive decomposition 
in  heterogeneous energetic materials place significant importance 
on the mathematical model of the heat transfer process in an isotropic solid body 
containing an absorbing inclusion in the form of a spherical layer. Difficulties are 
known to arise when seeking an analytical solution to the corresponding problem 
of non-stationary heat conduction, both through the application of Laplace’s 
integral transformation with respect to the time variable and singular integral 
transformation with respect to the spatial variable. This explains the absence 
of an analytical solution for the considered problem using current methods.
The task of determining the temperature field in an isotropic solid body with 
an absorbing penetrating radiation inclusion in  the  form of a spherical layer 
is formulated. The implemented mathematical model of the heat transfer process 
represents a mixed problem for a system of three second-order partial differential 
equations of the parabolic type in the presence of a non-stationary heat source 
in the system. An analytical method for solving the problem is proposed, which 
consists of two main stages.
The  first stage involves finding the  solution to  the  problem in  the  space 
of  the  Laplace integral transformation image, followed by  its  asymptotic 
expansion. The procedure used allows for the estimation of the extent and radius 
of the boundary of the thermal disturbance zone for large values of the Fourier 
number. The  second stage, based on  the application of  the developed finite 
integral transformation with respect to  the  spatial variable for  a  three-layer 
region, completes the procedure of constructing an analytically closed solution 
to the original problem of non-stationary heat conduction.

Keywords: isotropic solid body, laser radiation, absorbing inclusion in the form 
of a spherical layer, temperature field, integral transformations




