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В статье исследуются теплопроводящие свойства пористых материалов 
с каркасом на основе трижды периодических минимальных поверхностей 
(ТПМП) типа Gyroid, Diamond и Fisher–Koch S. На основе численных 
и экспериментальных методов были определены эмпирические зависи-
мости эффективной теплопроводности пористых сред от геометрических 
параметров и физических свойств материала каркаса. Полученные зави-
симости позволяют создавать пористые материалы с заданными тепло-
проводящими свойствами. Определены преимущества и недостатки кон-
струкций на основе ТПМП для использования в качестве оребрения в те-
плообменных трактах тепломассообменного оборудования. Отмечено, что 
пористые структуры на основе минимальных поверхностей Fisher–Koch S 
обладают рядом преимуществ в сравнении с другими типами ячеек: макси-
мальная площадь поверхности; высокая эффективная теплопроводность; 
малое количество застойных областей внутри пористого каркаса. При рав-
ных толщинах стенки и периодах ТПМП, теплопроводность материалов 
на основе Fisher–Koch S на 39% больше, чем у Diamond и на 96% в срав-
нении с Gyroid.
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ВВЕДЕНИЕ

Эффективность технических систем во многом зависит от температурного ре-
жима их эксплуатации [1–4]. Внутренние устройства терморегулирования влияют 
на производительность и надежность работы авиационных двигателей [1], долго-
вечность и электрическую мощность солнечных панелей, срок службы аккумуля-
торов [3, 4]. Особое внимание при проектировании ТМО-оборудования уделяет-
ся повышению интенсивности теплообмена за счет повышения площади контакта 
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теплоносителей (оребрение, ошиповка и др.); турбулизации потока греющей и/или 
нагреваемой среды; снижению термического сопротивления теплопередающей 
стенки [5] и др. Снижение термического сопротивления достигается путем умень-
шения толщины теплопередающей стенки, а также повышением коэффициента 
теплоотдачи [6], в том числе за счет турбулизации потока среды [7]. Повышение 
площади теплообменной поверхности и турбулизация потока достигаются за счет 
использования оребрения теплопередающей стенки.

Несмотря на развитие традиционных методов оребрения, достижение оптималь-
ных массогабаритных характеристик ограничено конструктивными особенностями 
теплообменного устройства [8, 9]. Поэтому разрабатываются новые подходы к кон-
струированию высокопроизводительных теплообменных устройств за счет измене-
ния формы оребрения, формы теплообменного тракта [10].

Одной из наиболее перспективных форм оребрения на данный момент являются 
периодические ячеистые решетки (PCL от англ. Periodic cellular lattice) [11]. Исполь-
зование таких решетчатых структур повышает безразмерный коэффициент тепло-
вой эффективности Nu/f 0.3 на 60% по сравнению с традиционным теплообменным 
оборудованием [12]. Среди таких решеток наиболее перспективными для оребрения 
являются структуры основанные на TPMS (от англ. Triply periodic minimal surface). 
В первую очередь это связано с большей удельной площадью поверхности [13, 14]. 
Решетки TPMS имеют биологическую природу и встречаются в таких природных 
системах, как морские ежи, крылья бабочек, экзоскелеты жуков и т.д. [15]. 

На  данный момент в  качестве оребрения рассмотрены несколько разновид-
ностей TPMS, а именно Primitive, Neovius и Schoen’s I-WP. Однако конструкции 
Primitive и Schoen’s I-WP обладают большими застойными областями [16], Neovius 
обладает наибольшей потерей давления [17]. В связи с этим целесообразно рассмо-
треть в качестве оребрения другие разновидности TPMS, такие как Diamond(D) 
[18], Gyroid(G) [19], Fisher–Koch S(FKS) [17, 20], которые обладают наименьшими 
застойными областями, что важно для равномерной передачи энергии, без значи-
тельных температурных напряжений материала. Эти напряжения могут привести 
к деформациям, трещинам, разрушению материала. Особое внимание стоит уделить 
оребрению на основе “D” и “FKS”, т.к. указанные структуры обладают наибольши-
ми площадями на 1 элементарную ячейку (рис. 1) 

Цель настоящего исследования заключается в определении теплопроводящих 
свойств в конструкциях на основе топологии Fisher–Koch S (FKS), Diamond (D), 
Gyroid (G) от свойств материала и геометрических характеристик. Для использования 
TPMS в качестве оребрения не менее важно определить области с максимальными 
температурными напряжениями. Исследование выполнялось на основе численного 
моделирования по методологии, представленной ранее [21], и натурного эксперимен-
та. Научная значимость исследования заключается в определении эмпирических за-
висимостей эффективной теплопроводности от свойств материала и геометрических 
характеристик решетки. Ожидается, что данное исследование станет основой для бу-
дущей разработки новых методов оребрения на основе топологий TPMS.

ФОРМИРОВАНИЕ ГЕОМЕТРИИ

TPMS можно описать и сгенерировать определенными математическими функ-
циями [22–24]. Существует несколько методов генерации решетчатых TPMS: пара-
метрические, неявные и граничные методы [25]. В параметрическом методе TPMS 
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может быть сгенерирована с  использованием параметризации Вейерштрасса– 
Эннепера [26, 27]. В соответствии с неявным методом TPMS аппроксимируется 
с помощью однозначной функции поверхности уровня 𝑓(𝑥,𝑦,𝑧) = 𝑐 [28, 29], где 𝑓 – 
различные тригонометрические функции.

Область, ограниченная уравнениями поверхности уровня, представленными 
в табл. 1, формирует решетку TPMS по неявному методу. Вся решетка может быть 
разбита на повторяющиеся элементы – элементарные ячейки с длиной “𝑎” равной 
периоду поверхности уровня. Толщина решетки “d” равна разности параметров сме-
щения двух уравнений поверхности уровня 𝑓(𝑥,𝑦,𝑧,𝑎).

Ряд программ, основанных на неявном методе, упрощают процесс генерации по-
верхностей и создают требуемую решетку TPMS в формате .stl. “TPMS Designer” [31] –  
это инструмент, основанный на программном обеспечении MATLAB, который по-
зволяет быстро создавать, визуализировать и анализировать неявно определенные 
структуры с использованием строгих математических уравнений. Программное обе-
спечение позволяет параметрически корректировать размер, соотношение сторон, 
поворот и разрешение структуры, хотя количество доступных поверхностей не пре-
вышает десяти. “Minisurf” [30, 32] обеспечивает визуализацию поверхности и со-
здание файлов моделирования CAD на основе их поверхностных аппроксимаций, 
определяемых уравнением. Программа использовалась в различных исследованиях 
для численного изучения механических свойств TPMS [33, 34] и подходов к изго-
товлению решеток TPMS [35].

Другим заметным программным продуктом для проектирования решеток TPMS 
является Surface Evolver [36, 37]. Он основан на методе Плато, который требует опи-
сания границы поверхности, как правило, в форме многоугольника в R3. Затем по-
верхность итеративно уточняется для минимизации площади полигональной сетки, 
которая окружает границу, с учетом ограничений. Эти ограничения могут включать 
геометрические положения вершин или интегрированные величины.
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Рис. 1. Площадь поверхности одной элементарной ячейки, основанной на поверхности Fisher–
Koch S (FKS), Diamond (D), Gyroid (G), Primitive(P), Neovius(N) и Schoen’s I-WP (IWP) при гео-
метрических параметрах “𝑎” = 5 мм, “d” = 0.3 мм.
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Полигональное уточнение используется для создания более точной триангу-
ляции. Поверхность уточняется до тех пор, пока ни одна вершина триангуляции 
не может быть перемещена дальше для уменьшения ее площади. В настоящее время 
Surface Evolver предлагает более 50 различных поверхностей. Программный продукт 
использовался в многочисленных исследованиях свойств TPMS. Исследование Ли 
[38] было сосредоточено на изучении упругих свойств архитектурных пен на основе 
TPMS, включая одноосное и сдвиговое напряжение, индекс анизотропии, коэффи-
циент Пуассона и предел текучести. Далак [39] исследовал механические свойства 

Таблица 1. Уравнения поверхности уровня TPMS 

TPMS Элементарная ячейка Уравнение поверхности уровня  
𝑓(𝑥,𝑦,𝑧, 𝑎)  = d∕2

G
yr

oi
d[

30
]

a

δ

sin(2π𝑦/𝑎)cos(2π𝑥/𝑎)+sin(2π𝑧/𝑎)cos(2π𝑦/𝑎)+ 
+ sin(2π𝑥/𝑎)cos(2π𝑧/𝑎)= d∕2

D
ia

m
on

d[
30

]

a

δ

sin(2π𝑥/𝑎)sin(2π𝑦/𝑎)sin(2π𝑧/𝑎) + 
+ sin(2π𝑥/𝑎)cos(2π𝑦/𝑎)cos(2π𝑧/𝑎) + 
+ cos(2π𝑥/𝑎)sin(2π𝑦/𝑎)cos(2π𝑧/𝑎) + 

+ cos(2π𝑥/𝑎)cos(2π𝑦/𝑎) sin(2π𝑧/𝑎)= d/2
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]

a

δ

cos(4π𝑥/𝑎)sin(2π𝑦/𝑎)cos(2π𝑧/𝑎) + 
+ cos(2π𝑥/𝑎)cos(4π𝑦/𝑎)sin(2π𝑧/𝑎) +  

+sin(2π𝑥/𝑎)cos(2π𝑦/𝑎)cos(4π𝑧/𝑎)= d/2
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3D-печатных композитных материалов с взаимопроникающей фазой с архитектурой 
TPMS. Ма [40] в ходе исследования механических свойства структур, полученных 
из Surface Evolver, также выявил, что эти TPMS конструкции превосходят упругои-
зотропные решетки при равной относительной плотности.

В данном исследовании геометрия расчетных и экспериментальных моделей ос-
нована на нулевых поверхностях уровня TPMS, сформированных в программном 
обеспечении Surface Evolver. Первым шагом процесса создания геометрии TPMS 
было получение облака точек с помощью программного обеспечения Surface Evolver. 
Процесс создания облака точек начался с загрузки входных данных для требуемой 
TPMS из библиотеки Кена Бракке [37]. С использованием встроенных функции 
Surface Evolver был построен кубический каркас из одной элементарной ячейки. 
Затем каркас был итеративно уточнен для достижения поверхности с минимальной 
площадью и минимальной средней кривизной.

Полученная TPMS из эволюции кубического каркаса была экспортирована как 
облако точек. Полученное облако точек содержало дополнительные для построе-
ния точки в количестве 2–3%. После удаления дополнительных точек результаты 
импортировались в Solidworks. Функция “Scan To 3D” использовалась для преоб-
разования облака точек в граненую поверхность. С помощью встроенных функций 
Ansys модуля SpaceClaim Direct Modeler из поверхности формировалась твердотель-
ная структура TPMS, ограниченная двумя эквидистантными поверхностями, отда-
ленными друг от друга на величину “d” (табл. 1). Расстояние от центра одной ячейки 
до центра другой соответствует периоду функции или длине ребра куба “𝑎”, вписан-
ного в ячейку. Полученная геометрическая модель использовалась для 3D печати 
опытных образцов, а также проведения численного моделирования в программном 
комплексе Ansys.

МЕТОДЫ И МАТЕРИАЛЫ

Для исследования теплопроводящих свойств TPMS структур используется мето-
дология исследования пористых материалов с упорядоченной структурой [21]. Со-
вместно с методом репрезентативного элементарного объема (REV-метод, от англ. 

“representative elementary volume”) в исследовании используется метод гомогени-
зации среды. Согласно REV-методу выбирается минимальный объем, воспроиз-
водящий свойства исследуемой системы, – элементарная ячейка, а полученные 
результаты обобщаются на весь исследуемый объем. Коэффициент эффективной 
теплопроводности пористых материалов согласно гомогенизированной модели ста-
ционарного режима переноса тепла при граничных условиях первого рода описы-
вается уравнением:

λeff
sq S

a T
=
−
∆ ,                                                          (1)

где 𝑞𝑠 – удельный тепловой поток, проходящий через сечение ячейки, Вт м−2; 𝑆  – 
площадь сечения ячейки, м2; 𝑎  – размер периода поверхности уровня, м; Δ𝑇 – раз-
ница температур, заданных на противоположных границах ячейки, °С.

Так как площадь сечения ячейки зависит от периода поверхности уровня “𝑎” 
и параметра смещения двух уравнений поверхности уровня “d”, была введена без-
размерная относительная толщина:
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χ
δ

=
a

.                                                                (2)

Использование такой безразмерной величины позволяет обобщать полученные 
результаты моделирования.

В рамках текущего исследования в качестве материалов конструкций TPMS вы-
браны: PHP [21], Hastelloy-X, Ti6Al4V [41], 3YSZ [42]. Выбор таких материалов обу-
словлен возможностью изготовления структур TPMS при помощи аддитивных тех-
нологий и последующей экспериментальной верификацией.

CAE МОДЕЛИРОВАНИЕ

Уравнение переноса тепла в конструкции TPMS в общем виде в декартовой си-
стеме координат может быть записано как:
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где T – температура, °С; r – плотность материала, кг м–3; с – удельная теплоемкость 
материала, Дж кг–1 °С–1; l – коэффициент теплопроводности материала, Вт м–1 °С–1; 
Q – объемная плотность тепловых источников, Вт м–3.

В  случае, если свойства материала приняты постоянными и  независимыми 
от температуры, а источники тепла отсутствуют, уравнение 3 может быть записано: 
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При решении уравнения 4 для переноса тепла внутри TPMS конструкции тради-
ционными аналитическими методами [43–46] возникает ряд трудностей. Развитие 
технологий компьютерного моделирования позволяет получать численные решения 
задач теплофизики с требуемой точностью за сравнительно короткое время. По этой 
причине для дальнейшего исследования теплофизических свойств были выбраны чис-
ленные методы конечных элементов, реализованные в программном комплексе Ansys.

Геометрическая модель TPMS структур экспортировалась в  модуль “Steady-
State Thermal” для формирования расчетной сетки и задания граничных условий 
(рис. 2б). Разница температур на двух противоположных сторонах REV объема со-
ставляет 24°С, а свойства материала приняты постоянными и независимыми от тем-
пературы. В работе были рассмотрены элементарные ячейки поверхностей Fisher–
Koch S (FKS), Diamond (D), Gyroid (G) c характерными размерами: толщина стенки  

“d” = 0.1–0.5 мм; размер периода поверхности уровня “а” = 5–10 мм.
Анализ чувствительности сетки проводился для измерения точности моделирова-

ния в отношении количества ячеек сетки. Были приняты и сравнены пять размеров 
элементов сетки для каждой геометрии TPMS. Результат эффективной теплопрово-
дности, полученный на самой мелкой сетке, сравнивался с результатами, получен-
ными на других сетках, и оценивалась процентная разница. Результаты исследования 
независимости сетки представлены на рис. 2а. Таким образом, для расчета использо-
вались модели, процентное расхождение тепловых потоков которых было меньше 1%, 
для экономии вычислительного времени и сохранения точности расчета.
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НАТУРНЫЙ ЭКСПЕРИМЕНТ

Развитие технологий аддитивного производства позволяет создавать образцы 
со сложной геометрией. Эти сложные геометрии формируются в программном обе-
спечении CAD. Поэтому производство образца делится на несколько этапов.

Первый этап – формирование CAD модели, который был подробно описан 
в разделе “формирование геометрии”. Второй этап включал в себя настройку пе-
чати. Для печати образцов была выбрана технология LCD (от англ. Liquid Crystal 
Display), поскольку она обеспечивает высокую точность изготовления. Для процесса 
3D-печати использовался принтер Phrozen Sonic Mighty 4K. В качестве полимерного 
материала (PHP) был выбран Phrozen Aqua. Образец геометрии САПР импорти-
руется в программу Chatubox Basic, где располагается вертикально, что приводит 
к удалению большей части жидкого полимера из конструкции уже во время печати. 

Заключительным этапом производства образца является постобработка готовой 
модели. После печати модель тщательно промывается в специальной жидкости для 
удаления остатков фотополимерной смолы. Затем промытый образец подвергается 
воздействию ультрафиолетового света для окончательного отверждения модели.

Образцы, представленные на рис. 3б, использовались для проведение натурных 
экспериментов на сертифицированной экспериментальной установке ИТП-МГ 

“100” (рис. 3а) с целью верификации результатов, полученных в ходе CAE модели-
рования. Основными элементами этого аппарата являются нагревательный элемент, 
система охлаждения, термоизолированный короб и контроллер. Сопротивление 
термического контакта между образцом и нагревающейся/охлаждающей сторона-
ми было уменьшено с помощью термопасты. Верхняя сторона образца нагрева-
лась с помощью нагревательного элемента до постоянной температуры 36° ± 0.5°С, 
а нижняя сторона охлаждалась до температуры 12° ± 0.5°С с помощью системы 
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Рис. 2. CAE моделирование: (a) анализ чувствительности сетки; (б) модель FKS с заданными гра-
ничными условиями.
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охлаждения. Максимальная систематическая погрешность определения коэффи-
циента теплопроводности и термического сопротивления в стационарном режиме 
в данной экспериментальной установке составляет ±5%, по данным производителя. 
Измерения проводились 5 раз для каждого образца, а случайная погрешность рас-
считывалась следующим образом:

σ =
−

−
=∑ i

N
ix x

N
1

2

1

( )
,                                                  (5)

где N – количество измерений; 𝑥𝑖  – результат отдельного измерения; x̅ – среднее 
значение измерений. Также в ходе CAE моделирования не учитывается воздух, на-
ходящийся в межпоровом пространстве опытного образца. В связи с этим эффек-
тивная теплопроводность каркаса конструкции TPMS без учета теплопроводности 
воздуха по параллельной модели может определиться следующим уравнением:

λ ελeff g
hq

T T
=

−
−

1 2
,                                                   (6)

где h – толщина образца, м; 𝑇1 и 𝑇2 – температуры на противоположных сторонах 
образца, °С; e – пористость; l𝑔 – теплопроводность воздуха, Вт м–1 °С–1. Использо-
вание параллельной модели для исключения влияния воздуха также увеличивает 
диапазон неопределенности. Геометрические размеры образцов и результаты экс-
перимента с учетом неопределенности сведены в табл. 2.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

В ходе исследования было определено распределение тепловых потоков при пе-
реносе тепла внутри TPMS конструкций. Области с максимальным тепловым пото-
ком вызывают значительные температурные напряжения, которые важно учитывать 
при разработке оребрения тепломассообменного оборудования. Исходя из рис. 4, 

Нагревательный элемент 36°C

Охлаждающий элемент 36°C

Тепловая изоляция

Образец

Контроллер

(a) (б)

Рис. 3. Натурный эксперимент: (a) Схема лабораторной установки ИТП-МГ “100”; (б) Опытные 
образцы, основанные на TPMS типа Diamond (1–3), Fisher–Koch S (4–6), Gyroid (7–9).
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во всех структурах в местах пересечения ребер ячейки имеются минимумы тепло-
вых потоков. Максимумы тепловых потоков расположены на ребрах ячейки, где 
тепловая энергия может передаваться закрученному потоку [10]. Наименьшее ко-
личество зон с минимумами тепловых потоков отмечается у структуры Gyroid, что 
приводит к равномерной передаче тепла потоку [47]. Однако площадь поверхности 
Gyroid меньше, чем у других рассмотренных поверхностей, что снижает общую эф-
фективность теплопередачи [48]. Структуры Diamond и Fisher–Koch S имеют более 
обширные области с максимальными тепловыми потоками, но из-за постоянного 
изменения направления потока и перемешивания структуры могут демонстрировать 
высокий коэффициент теплоотдачи [49, 50]. Также большая извилистость струк-
тур может увеличивать путь потока и, соответственно, время взаимодействия между 
жидкостью и твердой стенкой [51].

В ходе математического моделирования переноса тепла в конструкциях Gyroid, 
Diamond и Fisher–Koch S из различных материалов была определена зависимость 
эффективной теплопроводности от геометрических параметров. На рис. 5 пред-
ставлены обобщенные результаты эффективной теплопроводности для материалов 

Таблица 2. Геометрические параметры образцов 
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1 5 0.5 100 × 100 × 20 0.63 0.149 ± 0.009 0.1327 ± 0.013

2 7 0.3 98 × 98 × 21 0.84 0.081 ± 0.005 0.0592 ± 0.0058

3 10 0.2 100 × 100 × 20 0.92 0.052 ± 0.003 0.028 ± 0.0027
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4 5 0.5 100 × 100 × 20 0.48 0.196 ± 0.012 0.1835 ± 0.018

5 7 0.3 98 × 98 × 21 0.77 0.103 ± 0.006 0.083 ± 0.0081

6 10 0.2 100 × 100 × 20 0.89 0.063 ± 0.004 0.0398 ± 0.0039

G
yr

oi
d

7 5 0.5 100 × 100 × 20 0.7 0.113 ± 0.007 0.0949 ± 0.0093

8 7 0.3 98 × 98 × 21 0.87 0.064 ± 0.004 0.0414 ± 0.0041

9 10 0.2 100 × 100 × 20 0.94 0.043 ± 0.003 0.0186 ± 0.0018
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PHP. Результаты CAE моделирования структур Gyroid, Diamond и Fisher–Koch S, 
изготовленных из других материалов, имеют схожий вид. Толщина и периодическая 
длина TPMS оказывает значительное влияние на тепловые характеристики кон-
струкций TPMS, что согласуется с анализом потока внутри TPMS [18]. Уменьшение 
размера ячейки при постоянной толщине оказывает нелинейное влияние на тепло-
проводящие свойства конструкции, что может быть объяснено пропорциональным 
уменьшением пористости материала [21]. Из рис. 6 следует, что одинаковые значе-
ния теплопроводности могут быть получены при различных комбинациях толщины 
и длины ячейки. Это было отмечено и для других топологий TPMS, рассмотренных 
ранее [52]. Наибольшую эффективную теплопроводность демонстрирует конструк-
ция на основе Fisher–Koch S, превосходя Diamond на 40% и Gyroid на 96%.

(a) (б) (в)

Вт/мм2

Рис. 4. Распределение тепловых потоков: (а) конструкция на основе Diamond; (б) конструкция 
на основе Gyroid; (в) конструкция на основе Fisher–Koch S.
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Рис. 5. Распределение эффективной теплопроводности конструкций Diamond, Gyroid, Fisher–Koch 
S из материала PHP.
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Используя введенный ранее параметр относительной толщины “c”, результаты 
численного моделирования и натурного эксперимента можно обобщить в графики, 
представленные на рис. 6. Результаты численного моделирования согласуются с ре-
зультатами собственного, а также независимого [41, 42] эксперимента. Наибольшее 
расхождение результатов CAE моделирования теплопереноса и эксперимента на-
блюдается для TPMS конструкций из материалов PHP. Для конструкций из PHP 
результаты, полученные в ходе натурного эксперимента переноса тепла, демон-
стрируют значения больше на 7–13% по сравнению с CAE моделированием. Это 
объясняется влиянием конвекции в опытном образце, возникающей в ходе натур-
ного эксперимента, которая не была учтена в ходе CAE моделирования. Для других 

Э
ф

ф
ек

ти
вн

ая
 т

еп
ло

пр
ов

од
но

ст
ь 
λ э

ф
ф

, В
т/

м
 К

Э
ф

ф
ек

ти
вн

ая
 т

еп
ло

пр
ов

од
но

ст
ь 
λ э

ф
ф

, В
т/

м
 К

5

4

3

2

1

0
0.02 0.04 0.06 0.08 0.10

Относительная толщина χ
0.12 0.14 0.16 0.18 0.20

0.30

0.25

0.20

0.15

0.10

0.05

0 0.02 0.04 0.06 0.08 0.10
Относительная толщина χ

0.12 0.14 0.16 0.18 0.20

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

1.2

1.0

0.8

0.6

0.4

0.2

0

Diamond Уравнение: 4 Gyroid Уравнение: 4 Fischer-Koch S Уравнение: 4

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Рис.  6. Эффективная теплопроводность конструкций на  основе TPMS из  материалов PHP, 
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эксперимента.
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материалов расхождение CAE моделирования с натурным экспериментом не пре-
вышает 5%. Это объясняется большей теплопроводностью материалов Hastelloy-X, 
Ti6Al4V, 3YSZ по сравнению с PHP, что уменьшает влияние теплопроводности 
и конвекции воздуха в межпоровом пространстве [53]. Таким образом, влиянием 
конвекции можно пренебрегать для TPMS конструкций на основе Diamond, Gyroid, 
Fisher–Koch S с длиной ячейки “𝑎” в границах 5–10 мм и толщиной “d” в границах 
0.1–0.5 мм из материалов с теплопроводностью более 2.249 Вт м−1К−1.

Графики, представленные на рис. 6, имеют схожий вид и могут быть нормализо-
ваны по теплопроводности исходного материала. В таком случае эффективная те-
плопроводность TPMS конструкции может быть описана следующим уравнением:

λ βλ χeff s= ,                                                         (7)

где b – константа, учитывающая форму пор и их расположение в структуре TPMS. 
“b” для конструкций TPMS представлена в табл. 3.

Таблица 3. Коэффициенты “b”, учитывающие форму пор и их расположение в структуре 
TPMS для выражения 7

TPMS Primitive [21] Gyroid Schoen’s IWP [21] Neovius [21] Diamond Fisher–Koch S
b 1.6 1.94 2.4 2.45 2.74 3.81

С использованием выражения (7) возможно прогнозирование теплофизических 
свойств с учетом теплопроводности исходного материала и относительной толщины 
структуры. Структура Fisher–Koch S ожидаемо продемонстрировала наибольший коэф-
фициент по сравнению с другими структурами, рассмотренными в текущем и предыду-
щих исследованиях [21]. При одинаковых параметрах периода “𝑎” и толщины ячейки 

“d” эффективная теплопроводность конструкций на основе Fisher–Koch S больше, чем у 
“Primitive” и Schoen’s IWP на 130% и 58% соответственно. С учетом наибольшей площа-
ди поверхности (рис. 1), наибольшей эффективной теплопроводности, минимальных 
застойных областей [17] структура FKS может демонстрировать увеличение теплопе-
редачи по сравнению с оребрением на основе Primitive [54, 55] или Schoen’s IWP [50].

ЗАКЛЮЧЕНИЕ

В настоящей работе были исследованы теплопроводящие свойства пористых 
материалов с упорядоченной структурой на основе топологии TPMS типа Fisher–
Koch S (FKS), Diamond (D), Gyroid (G) на основе численных и экспериментальных 
методов. 

Основные результаты: 
1.	 Определены распределения тепловых потоков при переносе тепла в TPMS 

конструкциях. Выявлены области с минимальными и максимальными тепловым 
потоками, которые могут вызывать температурные напряжения в оребрении тепло-
массообменного оборудования. 

2.	 Представлены графики зависимости эффективной теплопроводности от разно-
сти параметра смещения двух уравнений поверхности уровня 𝑓(𝑥,𝑦,𝑧,𝑎) и периода по-
верхности уровня TPMS, из которых следует, что толщина решетки “d” и длина ячейки 

“𝑎” оказывают значительное влияние на тепловые характеристики конструкций TPMS. 
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3.	 Период поверхности уровня оказывает нелинейное влияние на теплопрово-
дящие свойства конструкции. Одинаковые значения эффективной теплопроводно-
сти каркаса могут быть получены при различных комбинациях толщины и длины 
ячейки. 

4.	 При равных периодах поверхности уровня “𝑎” и толщинах решетки “d” кон-
струкция на основе Fisher–Koch S (FKS) демонстрирует на 39%, 96% и 138% боль-
шую теплопроводность по сравнению с конструкциями на основе Diamond, Gyroid 
и Primitive соответственно. 

5.	 Получено эмпирическое уравнения эффективной теплопроводности от дли-
ны ячейки “𝑎”, толщины решетки “d” и теплопроводности материала, из которо-
го изготовлен каркас. Это уравнение позволяет создавать материалы с заданными 
свойствами. 

Результаты исследования могут стать основой для будущей разработки оребрения 
на основе TPMS в теплообменном оборудовании. Количество экстремумов тепло-
вых потоков в структуре Gyroid меньше по сравнению с другими рассмотренными 
структурами, что снижает риск разрушения оребрения от температурных напря-
жений. Однако площадь поверхности и коэффициент “b” у конструкции Gyroid 
меньше, чем у Fisher–Koch S и Diamond, что снижает общую эффективность те-
плопередачи. Структура Fisher–Koch S может быть рассмотрена в качестве оребре-
ния теплообменного оборудования, поскольку конструкция FKS демонстрирует 
максимальную среди рассмотренных TPMS площадь поверхности, эффективную 
теплопроводность и минимальные застойные области [17]. Для увеличения тепло-
проводности, а соответственно и энергии, передаваемой за счет оребрения, реко-
мендуется уменьшать период поверхности уровня TPMS, что приведет к росту по-
терь давления [56]. В дальнейшем планируется проведение исследования взаимос-
вязанных процессов переноса в канале с оребрением, основанным на поверхностях 
FKS и Diamond.

Исследование выполнено за счет гранта Российского научного фонда № 23-79-
10044, https://rscf.ru/project/23- 79-10044/
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Investigation of  the  Effective Thermal Conductivity of  Materials Based 
on  Triply Periodic Minimal Surfaces of  the  Diamond, Gyroid,  

and  Fisher–Koch S Types
D. M. Braginа, *, A. V. Ereminа

аSamara State Technical University, Samara, Russia
*e-mail: dimabragin2204@yandex.ru

The  article investigates the  thermal conductivity properties of  lattices 
based on  the  topology of  triply periodic minimal surfaces (TPMS) such 
as Gyroid, Diamond, and Fisher–Koch S. Using numerical and experimental 
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methods, empirical relationships were established between the  effective 
thermal conductivity of  these structures and  their geometric parameters 
as well as the properties of the base material. The derived relationship allows 
for the creation of materials with specified thermal conductivity characteristics. 
The  advantages and  disadvantages of  TPMS structures for  implementation 
as fins in heat exchange devices were identified. The Fisher–Koch S structure 
can be considered for use as heat exchanger fins, as it demonstrates the highest 
surface area, effective thermal conductivity, and  minimal stagnant zones 
among the TPMS considered. With equal surface period and lattice thickness, 
the Fisher–Koch S structure shows 39% higher thermal conductivity compared 
to Diamond and 96% higher compared to Gyroid.

Keywords: triply periodic minimal surfaces, effective thermal conductivity, porous 
material, predicted properties, finning




